1. Computational and Systems Biology
  2. Plant Biology
Download icon

Coordination of robust single cell rhythms in the Arabidopsis circadian clock via spatial waves of gene expression

  1. Peter D Gould
  2. Mirela Domijan
  3. Mark Greenwood
  4. Isao T Tokuda
  5. Hannah Rees
  6. Laszlo Kozma-Bognar
  7. Anthony JW Hall  Is a corresponding author
  8. James CW Locke  Is a corresponding author
  1. University of Liverpool, United Kingdom
  2. University of Cambridge, United Kingdom
  3. Ritsumeikan University, Japan
  4. Hungarian Academy of Sciences, Hungary
Research Article
  • Cited 29
  • Views 5,647
  • Annotations
Cite this article as: eLife 2018;7:e31700 doi: 10.7554/eLife.31700

Abstract

The Arabidopsis circadian clock orchestrates gene regulation across the day/night cycle. Although a multiple feedback loop circuit has been shown to generate the 24h rhythm, it remains unclear how robust the clock is in individual cells, or how clock timing is coordinated across the plant. Here we examine clock activity at the single cell level across Arabidopsis seedlings over several days under constant environmental conditions. Our data reveal robust single cell oscillations, albeit desynchronised. In particular, we observe two waves of clock activity; one going down, and one up the root. We also find evidence of cell-to-cell coupling of the clock, especially in the root tip. A simple model shows that cell-to-cell coupling and our measured period differences between cells can generate the observed waves. Our results reveal the spatial structure of the plant clock and suggest that unlike the centralised mammalian clock, the Arabidopsis clock has multiple coordination points.

Article and author information

Author details

  1. Peter D Gould

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Mirela Domijan

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark Greenwood

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Isao T Tokuda

    Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6212-0022
  5. Hannah Rees

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Laszlo Kozma-Bognar

    Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8289-193X
  7. Anthony JW Hall

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    For correspondence
    anthony.hall@earlham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  8. James CW Locke

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    james.locke@slcu.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0670-1943

Funding

Gatsby Charitable Foundation

  • James CW Locke

H2020 European Research Council

  • James CW Locke

Biotechnology and Biological Sciences Research Council

  • Peter D Gould
  • Mirela Domijan
  • Anthony JW Hall
  • James CW Locke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard Amasino, University of Wisconsin, United States

Publication history

  1. Received: September 6, 2017
  2. Accepted: April 25, 2018
  3. Accepted Manuscript published: April 26, 2018 (version 1)
  4. Version of Record published: June 5, 2018 (version 2)

Copyright

© 2018, Gould et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,647
    Page views
  • 836
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Shivesh Chaudhary et al.
    Research Article Updated

    Although identifying cell names in dense image stacks is critical in analyzing functional whole-brain data enabling comparison across experiments, unbiased identification is very difficult, and relies heavily on researchers’ experiences. Here, we present a probabilistic-graphical-model framework, CRF_ID, based on Conditional Random Fields, for unbiased and automated cell identification. CRF_ID focuses on maximizing intrinsic similarity between shapes. Compared to existing methods, CRF_ID achieves higher accuracy on simulated and ground-truth experimental datasets, and better robustness against challenging noise conditions common in experimental data. CRF_ID can further boost accuracy by building atlases from annotated data in highly computationally efficient manner, and by easily adding new features (e.g. from new strains). We demonstrate cell annotation in Caenorhabditis elegans images across strains, animal orientations, and tasks including gene-expression localization, multi-cellular and whole-brain functional imaging experiments. Together, these successes demonstrate that unbiased cell annotation can facilitate biological discovery, and this approach may be valuable to annotation tasks for other systems.

    1. Cell Biology
    2. Computational and Systems Biology
    Ryan Conrad, Kedar Narayan
    Tools and Resources

    Automated segmentation of cellular electron microscopy (EM) datasets remains a challenge. Supervised deep learning (DL) methods that rely on region-of-interest (ROI) annotations yield models that fail to generalize to unrelated datasets. Newer unsupervised DL algorithms require relevant pre-training images, however, pre-training on currently available EM datasets is computationally expensive and shows little value for unseen biological contexts, as these datasets are large and homogeneous. To address this issue, we present CEM500K, a nimble 25 GB dataset of 0.5 × 106 unique 2D cellular EM images curated from nearly 600 three-dimensional (3D) and 10,000 two-dimensional (2D) images from >100 unrelated imaging projects. We show that models pre-trained on CEM500K learn features that are biologically relevant and resilient to meaningful image augmentations. Critically, we evaluate transfer learning from these pre-trained models on six publicly available and one newly derived benchmark segmentation task and report state-of-the-art results on each. We release the CEM500K dataset, pre-trained models and curation pipeline for model building and further expansion by the EM community. Data and code are available at https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10592/ and https://git.io/JLLTz.