Coordination of robust single cell rhythms in the Arabidopsis circadian clock via spatial waves of gene expression

  1. Peter D Gould
  2. Mirela Domijan
  3. Mark Greenwood
  4. Isao T Tokuda
  5. Hannah Rees
  6. Laszlo Kozma-Bognar
  7. Anthony JW Hall  Is a corresponding author
  8. James CW Locke  Is a corresponding author
  1. University of Liverpool, United Kingdom
  2. University of Cambridge, United Kingdom
  3. Ritsumeikan University, Japan
  4. Hungarian Academy of Sciences, Hungary

Abstract

The Arabidopsis circadian clock orchestrates gene regulation across the day/night cycle. Although a multiple feedback loop circuit has been shown to generate the 24h rhythm, it remains unclear how robust the clock is in individual cells, or how clock timing is coordinated across the plant. Here we examine clock activity at the single cell level across Arabidopsis seedlings over several days under constant environmental conditions. Our data reveal robust single cell oscillations, albeit desynchronised. In particular, we observe two waves of clock activity; one going down, and one up the root. We also find evidence of cell-to-cell coupling of the clock, especially in the root tip. A simple model shows that cell-to-cell coupling and our measured period differences between cells can generate the observed waves. Our results reveal the spatial structure of the plant clock and suggest that unlike the centralised mammalian clock, the Arabidopsis clock has multiple coordination points.

Data availability

Single cell data is available from https://gitlab.com/slcu/teamJL/Gould_etal_2018

The following data sets were generated
    1. Gould PD
    2. Domijan M
    3. Greenwood M
    4. Tokuda IT
    5. Rees H
    6. Kozma-Bognar L
    7. Hall AJW
    8. Locke JCW
    (2018) WT
    https://gitlab.com/slcu/teamJL/Gould_etal_2018/tree/master/SingleCellFiles/Data_singlecell/WT_final_coordinates.
    1. Gould PD
    2. Domijan M
    3. Greenwood M
    4. Tokuda IT
    5. Rees H
    6. Kozma-Bognar L
    7. Hall AJW
    8. Locke JCW
    (2018) WT repeat
    https://gitlab.com/slcu/teamJL/Gould_etal_2018/tree/master/SingleCellFiles/Data_singlecell/WTrepeat_final_coordinates.
    1. Gould PD
    2. Domijan M
    3. Greenwood M
    4. Tokuda IT
    5. Rees H
    6. Kozma-Bognar L
    7. Hall AJW
    8. Locke JCW
    (2018) CCA1-Long
    https://gitlab.com/slcu/teamJL/Gould_etal_2018/tree/master/SingleCellFiles/Data_singlecell/CCA1-long_final_coordinates.

Article and author information

Author details

  1. Peter D Gould

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Mirela Domijan

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark Greenwood

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Isao T Tokuda

    Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6212-0022
  5. Hannah Rees

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Laszlo Kozma-Bognar

    Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8289-193X
  7. Anthony JW Hall

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    For correspondence
    anthony.hall@earlham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  8. James CW Locke

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    james.locke@slcu.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0670-1943

Funding

Gatsby Charitable Foundation

  • James CW Locke

H2020 European Research Council

  • James CW Locke

Biotechnology and Biological Sciences Research Council

  • Peter D Gould
  • Mirela Domijan
  • Anthony JW Hall
  • James CW Locke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Gould et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,255
    views
  • 991
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter D Gould
  2. Mirela Domijan
  3. Mark Greenwood
  4. Isao T Tokuda
  5. Hannah Rees
  6. Laszlo Kozma-Bognar
  7. Anthony JW Hall
  8. James CW Locke
(2018)
Coordination of robust single cell rhythms in the Arabidopsis circadian clock via spatial waves of gene expression
eLife 7:e31700.
https://doi.org/10.7554/eLife.31700

Share this article

https://doi.org/10.7554/eLife.31700

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.