Coordination of robust single cell rhythms in the Arabidopsis circadian clock via spatial waves of gene expression

  1. Peter D Gould
  2. Mirela Domijan
  3. Mark Greenwood
  4. Isao T Tokuda
  5. Hannah Rees
  6. Laszlo Kozma-Bognar
  7. Anthony JW Hall  Is a corresponding author
  8. James CW Locke  Is a corresponding author
  1. University of Liverpool, United Kingdom
  2. University of Cambridge, United Kingdom
  3. Ritsumeikan University, Japan
  4. Hungarian Academy of Sciences, Hungary

Abstract

The Arabidopsis circadian clock orchestrates gene regulation across the day/night cycle. Although a multiple feedback loop circuit has been shown to generate the 24h rhythm, it remains unclear how robust the clock is in individual cells, or how clock timing is coordinated across the plant. Here we examine clock activity at the single cell level across Arabidopsis seedlings over several days under constant environmental conditions. Our data reveal robust single cell oscillations, albeit desynchronised. In particular, we observe two waves of clock activity; one going down, and one up the root. We also find evidence of cell-to-cell coupling of the clock, especially in the root tip. A simple model shows that cell-to-cell coupling and our measured period differences between cells can generate the observed waves. Our results reveal the spatial structure of the plant clock and suggest that unlike the centralised mammalian clock, the Arabidopsis clock has multiple coordination points.

Data availability

Single cell data is available from https://gitlab.com/slcu/teamJL/Gould_etal_2018

The following data sets were generated
    1. Gould PD
    2. Domijan M
    3. Greenwood M
    4. Tokuda IT
    5. Rees H
    6. Kozma-Bognar L
    7. Hall AJW
    8. Locke JCW
    (2018) WT
    https://gitlab.com/slcu/teamJL/Gould_etal_2018/tree/master/SingleCellFiles/Data_singlecell/WT_final_coordinates.
    1. Gould PD
    2. Domijan M
    3. Greenwood M
    4. Tokuda IT
    5. Rees H
    6. Kozma-Bognar L
    7. Hall AJW
    8. Locke JCW
    (2018) WT repeat
    https://gitlab.com/slcu/teamJL/Gould_etal_2018/tree/master/SingleCellFiles/Data_singlecell/WTrepeat_final_coordinates.
    1. Gould PD
    2. Domijan M
    3. Greenwood M
    4. Tokuda IT
    5. Rees H
    6. Kozma-Bognar L
    7. Hall AJW
    8. Locke JCW
    (2018) CCA1-Long
    https://gitlab.com/slcu/teamJL/Gould_etal_2018/tree/master/SingleCellFiles/Data_singlecell/CCA1-long_final_coordinates.

Article and author information

Author details

  1. Peter D Gould

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Mirela Domijan

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark Greenwood

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Isao T Tokuda

    Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6212-0022
  5. Hannah Rees

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Laszlo Kozma-Bognar

    Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8289-193X
  7. Anthony JW Hall

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    For correspondence
    anthony.hall@earlham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  8. James CW Locke

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    james.locke@slcu.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0670-1943

Funding

Gatsby Charitable Foundation

  • James CW Locke

H2020 European Research Council

  • James CW Locke

Biotechnology and Biological Sciences Research Council

  • Peter D Gould
  • Mirela Domijan
  • Anthony JW Hall
  • James CW Locke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard Amasino, University of Wisconsin, United States

Version history

  1. Received: September 6, 2017
  2. Accepted: April 25, 2018
  3. Accepted Manuscript published: April 26, 2018 (version 1)
  4. Version of Record published: June 5, 2018 (version 2)

Copyright

© 2018, Gould et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,101
    views
  • 973
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter D Gould
  2. Mirela Domijan
  3. Mark Greenwood
  4. Isao T Tokuda
  5. Hannah Rees
  6. Laszlo Kozma-Bognar
  7. Anthony JW Hall
  8. James CW Locke
(2018)
Coordination of robust single cell rhythms in the Arabidopsis circadian clock via spatial waves of gene expression
eLife 7:e31700.
https://doi.org/10.7554/eLife.31700

Share this article

https://doi.org/10.7554/eLife.31700

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.