Coordination of robust single cell rhythms in the Arabidopsis circadian clock via spatial waves of gene expression

  1. Peter D Gould
  2. Mirela Domijan
  3. Mark Greenwood
  4. Isao T Tokuda
  5. Hannah Rees
  6. Laszlo Kozma-Bognar
  7. Anthony JW Hall  Is a corresponding author
  8. James CW Locke  Is a corresponding author
  1. University of Liverpool, United Kingdom
  2. University of Cambridge, United Kingdom
  3. Ritsumeikan University, Japan
  4. Hungarian Academy of Sciences, Hungary

Abstract

The Arabidopsis circadian clock orchestrates gene regulation across the day/night cycle. Although a multiple feedback loop circuit has been shown to generate the 24h rhythm, it remains unclear how robust the clock is in individual cells, or how clock timing is coordinated across the plant. Here we examine clock activity at the single cell level across Arabidopsis seedlings over several days under constant environmental conditions. Our data reveal robust single cell oscillations, albeit desynchronised. In particular, we observe two waves of clock activity; one going down, and one up the root. We also find evidence of cell-to-cell coupling of the clock, especially in the root tip. A simple model shows that cell-to-cell coupling and our measured period differences between cells can generate the observed waves. Our results reveal the spatial structure of the plant clock and suggest that unlike the centralised mammalian clock, the Arabidopsis clock has multiple coordination points.

Data availability

Single cell data is available from https://gitlab.com/slcu/teamJL/Gould_etal_2018

The following data sets were generated
    1. Gould PD
    2. Domijan M
    3. Greenwood M
    4. Tokuda IT
    5. Rees H
    6. Kozma-Bognar L
    7. Hall AJW
    8. Locke JCW
    (2018) WT
    https://gitlab.com/slcu/teamJL/Gould_etal_2018/tree/master/SingleCellFiles/Data_singlecell/WT_final_coordinates.
    1. Gould PD
    2. Domijan M
    3. Greenwood M
    4. Tokuda IT
    5. Rees H
    6. Kozma-Bognar L
    7. Hall AJW
    8. Locke JCW
    (2018) WT repeat
    https://gitlab.com/slcu/teamJL/Gould_etal_2018/tree/master/SingleCellFiles/Data_singlecell/WTrepeat_final_coordinates.
    1. Gould PD
    2. Domijan M
    3. Greenwood M
    4. Tokuda IT
    5. Rees H
    6. Kozma-Bognar L
    7. Hall AJW
    8. Locke JCW
    (2018) CCA1-Long
    https://gitlab.com/slcu/teamJL/Gould_etal_2018/tree/master/SingleCellFiles/Data_singlecell/CCA1-long_final_coordinates.

Article and author information

Author details

  1. Peter D Gould

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Mirela Domijan

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark Greenwood

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Isao T Tokuda

    Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6212-0022
  5. Hannah Rees

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Laszlo Kozma-Bognar

    Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8289-193X
  7. Anthony JW Hall

    Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
    For correspondence
    anthony.hall@earlham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  8. James CW Locke

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    james.locke@slcu.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0670-1943

Funding

Gatsby Charitable Foundation

  • James CW Locke

H2020 European Research Council

  • James CW Locke

Biotechnology and Biological Sciences Research Council

  • Peter D Gould
  • Mirela Domijan
  • Anthony JW Hall
  • James CW Locke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Gould et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,183
    views
  • 984
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter D Gould
  2. Mirela Domijan
  3. Mark Greenwood
  4. Isao T Tokuda
  5. Hannah Rees
  6. Laszlo Kozma-Bognar
  7. Anthony JW Hall
  8. James CW Locke
(2018)
Coordination of robust single cell rhythms in the Arabidopsis circadian clock via spatial waves of gene expression
eLife 7:e31700.
https://doi.org/10.7554/eLife.31700

Share this article

https://doi.org/10.7554/eLife.31700

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions - the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS) - while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal's choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally-inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.

    1. Computational and Systems Biology
    2. Ecology
    Lenore Pipes, Rasmus Nielsen
    Tools and Resources

    Environmental DNA (eDNA) is becoming an increasingly important tool in diverse scientific fields from ecological biomonitoring to wastewater surveillance of viruses. The fundamental challenge in eDNA analyses has been the bioinformatical assignment of reads to taxonomic groups. It has long been known that full probabilistic methods for phylogenetic assignment are preferable, but unfortunately, such methods are computationally intensive and are typically inapplicable to modern Next-Generation Sequencing data. We here present a fast approximate likelihood method for phylogenetic assignment of DNA sequences. Applying the new method to several mock communities and simulated datasets, we show that it identifies more reads at both high and low taxonomic levels more accurately than other leading methods. The advantage of the method is particularly apparent in the presence of polymorphisms and/or sequencing errors and when the true species is not represented in the reference database.