p53 suppresses mutagenic RAD52 and POLθ pathways by orchestrating DNA replication restart homeostasis

  1. Sunetra Roy
  2. Karl-Heinz Tomaszowski
  3. Jessica W Luzwick
  4. Soyoung Park
  5. Jun Li
  6. Maureen Murphy
  7. Katharina Schlacher  Is a corresponding author
  1. UT MD Anderson Cancer Center, United States
  2. The Wistar Institute, United States

Abstract

Classically, p53 tumor suppressor acts in transcription, apoptosis, and cell cycle arrest. Yet, replication-mediated genomic instability is integral to oncogenesis, and p53 mutations promote tumor progression and drug-resistance. By delineating human and murine separation-of-function p53 alleles, we find that p53 null and gain-of-function (GOF) mutations exhibit defects in restart of stalled or damaged DNA replication forks driving genomic instability genetically separable from transcription activation. By assaying protein-DNA fork interactions in single cells, we unveil a p53-MLL3-enabled recruitment of MRE11 DNA replication restart nuclease. Importantly, p53 defects or depletion unexpectedly allow mutagenic RAD52 and POLq pathways to hijack stalled forks, which we find reflected in p53 defective breast-cancer patient COSMIC mutational signatures. These data uncover p53 as a keystone regulator of replication homeostasis within a DNA restart network. Mechanistically, this has important implications for development of resistance in cancer therapy. Combined, these results define an unexpected role for p53-mediated suppression of replication genome instability.

Data availability

The following previously published data sets were used
    1. The Cancer Genome Atlas Research Network
    (2016) Breast Cancer TCGA dataset (TCGA-BRCA)
    Publicly available from the NCI GDC Data Portal (https://cancergenome.nih.gov).

Article and author information

Author details

  1. Sunetra Roy

    Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  2. Karl-Heinz Tomaszowski

    Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  3. Jessica W Luzwick

    Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  4. Soyoung Park

    Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  5. Jun Li

    Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  6. Maureen Murphy

    Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, United States
    Competing interests
    Maureen Murphy, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7644-7296
  7. Katharina Schlacher

    Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, United States
    For correspondence
    KSchlacher@mdanderson.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7226-6391

Funding

Cancer Prevention and Research Institute of Texas (R1312)

  • Katharina Schlacher

National Cancer Institute (K22CA175262)

  • Katharina Schlacher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Roy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,247
    views
  • 917
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sunetra Roy
  2. Karl-Heinz Tomaszowski
  3. Jessica W Luzwick
  4. Soyoung Park
  5. Jun Li
  6. Maureen Murphy
  7. Katharina Schlacher
(2018)
p53 suppresses mutagenic RAD52 and POLθ pathways by orchestrating DNA replication restart homeostasis
eLife 7:e31723.
https://doi.org/10.7554/eLife.31723

Share this article

https://doi.org/10.7554/eLife.31723

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Maruti Nandan Rai, Qing Lan ... Koon Ho Wong
    Research Article Updated

    Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata’s survival in macrophages and drug tolerance.

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.