p53 suppresses mutagenic RAD52 and POLθ pathways by orchestrating DNA replication restart homeostasis

  1. Sunetra Roy
  2. Karl-Heinz Tomaszowski
  3. Jessica W Luzwick
  4. Soyoung Park
  5. Jun Li
  6. Maureen Murphy
  7. Katharina Schlacher  Is a corresponding author
  1. UT MD Anderson Cancer Center, United States
  2. The Wistar Institute, United States

Abstract

Classically, p53 tumor suppressor acts in transcription, apoptosis, and cell cycle arrest. Yet, replication-mediated genomic instability is integral to oncogenesis, and p53 mutations promote tumor progression and drug-resistance. By delineating human and murine separation-of-function p53 alleles, we find that p53 null and gain-of-function (GOF) mutations exhibit defects in restart of stalled or damaged DNA replication forks driving genomic instability genetically separable from transcription activation. By assaying protein-DNA fork interactions in single cells, we unveil a p53-MLL3-enabled recruitment of MRE11 DNA replication restart nuclease. Importantly, p53 defects or depletion unexpectedly allow mutagenic RAD52 and POLq pathways to hijack stalled forks, which we find reflected in p53 defective breast-cancer patient COSMIC mutational signatures. These data uncover p53 as a keystone regulator of replication homeostasis within a DNA restart network. Mechanistically, this has important implications for development of resistance in cancer therapy. Combined, these results define an unexpected role for p53-mediated suppression of replication genome instability.

Data availability

The following previously published data sets were used
    1. The Cancer Genome Atlas Research Network
    (2016) Breast Cancer TCGA dataset (TCGA-BRCA)
    Publicly available from the NCI GDC Data Portal (https://cancergenome.nih.gov).

Article and author information

Author details

  1. Sunetra Roy

    Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  2. Karl-Heinz Tomaszowski

    Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  3. Jessica W Luzwick

    Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  4. Soyoung Park

    Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  5. Jun Li

    Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, United States
    Competing interests
    No competing interests declared.
  6. Maureen Murphy

    Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, United States
    Competing interests
    Maureen Murphy, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7644-7296
  7. Katharina Schlacher

    Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, United States
    For correspondence
    KSchlacher@mdanderson.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7226-6391

Funding

Cancer Prevention and Research Institute of Texas (R1312)

  • Katharina Schlacher

National Cancer Institute (K22CA175262)

  • Katharina Schlacher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Simon Powell, Memorial Sloan Kettering Cancer Center, United States

Version history

  1. Received: September 3, 2017
  2. Accepted: January 12, 2018
  3. Accepted Manuscript published: January 15, 2018 (version 1)
  4. Version of Record published: March 1, 2018 (version 2)

Copyright

© 2018, Roy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,167
    views
  • 909
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sunetra Roy
  2. Karl-Heinz Tomaszowski
  3. Jessica W Luzwick
  4. Soyoung Park
  5. Jun Li
  6. Maureen Murphy
  7. Katharina Schlacher
(2018)
p53 suppresses mutagenic RAD52 and POLθ pathways by orchestrating DNA replication restart homeostasis
eLife 7:e31723.
https://doi.org/10.7554/eLife.31723

Share this article

https://doi.org/10.7554/eLife.31723

Further reading

    1. Chromosomes and Gene Expression
    Marwan Anoud, Emmanuelle Delagoutte ... Jean-Paul Concordet
    Research Article

    Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades’ radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.

    1. Chromosomes and Gene Expression
    Joshua D Eaton, Jessica Board ... Steven West
    Short Report

    RNA polymerase II (RNAPII) transcription initiates bidirectionally at many human protein-coding genes. Sense transcription usually dominates and leads to messenger RNA production, whereas antisense transcription rapidly terminates. The basis for this directionality is not fully understood. Here, we show that sense transcriptional initiation is more efficient than in the antisense direction, which establishes initial promoter directionality. After transcription begins, the opposing functions of the endonucleolytic subunit of Integrator, INTS11, and cyclin-dependent kinase 9 (CDK9) maintain directionality. Specifically, INTS11 terminates antisense transcription, whereas sense transcription is protected from INTS11-dependent attenuation by CDK9 activity. Strikingly, INTS11 attenuates transcription in both directions upon CDK9 inhibition, and the engineered recruitment of CDK9 desensitises transcription to INTS11. Therefore, the preferential initiation of sense transcription and the opposing activities of CDK9 and INTS11 explain mammalian promoter directionality.