Topoisomerase VI senses and exploits both DNA crossings and bends to facilitate strand passage

  1. Timothy J Wendorff
  2. James M Berger  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Johns Hopkins University School of Medicine, United States

Abstract

Type II topoisomerases manage DNA supercoiling and aid chromosome segregation using a complex, ATP-dependent duplex strand passage mechanism. Type IIB topoisomerases and their homologs support both archaeal/plant viability and meiotic recombination. Topo VI, a prototypical type IIB topoisomerase, comprises two Top6A and two Top6B protomers; how these subunits cooperate to engage two DNA segments and link ATP turnover to DNA transport is poorly understood. Using multiple biochemical approaches, we show that Top6B, which harbors the ATPase activity of topo VI, recognizes and exploits the DNA crossings present in supercoiled DNA to stimulate subunit dimerization by ATP. Top6B self-association in turn induces extensive DNA bending, which is needed to support duplex cleavage by Top6A. Our observations explain how topo VI tightly coordinates DNA crossover recognition and ATP binding with strand scission, providing useful insights into the operation of type IIB topoisomerases and related meiotic recombination and GHKL ATPase machineries.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Timothy J Wendorff

    Biophysics Graduate Program, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. James M Berger

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    jberge29@jhmi.edu
    Competing interests
    James M Berger, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0666-1240

Funding

National Institutes of Health (RO1 CA077373)

  • James M Berger

National Science Foundation (DGE 1106400)

  • Timothy J Wendorff

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Geeta J Narlikar, University of California, San Francisco, United States

Version history

  1. Received: September 3, 2017
  2. Accepted: March 28, 2018
  3. Accepted Manuscript published: March 29, 2018 (version 1)
  4. Version of Record published: April 27, 2018 (version 2)
  5. Version of Record updated: May 11, 2018 (version 3)

Copyright

© 2018, Wendorff & Berger

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,159
    Page views
  • 496
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Timothy J Wendorff
  2. James M Berger
(2018)
Topoisomerase VI senses and exploits both DNA crossings and bends to facilitate strand passage
eLife 7:e31724.
https://doi.org/10.7554/eLife.31724

Share this article

https://doi.org/10.7554/eLife.31724

Further reading

    1. Biochemistry and Chemical Biology
    Jake W Anderson, David Vaisar ... Natalie G Ahn
    Research Article

    Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named ‘L’ and ‘R,’ where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.

    1. Biochemistry and Chemical Biology
    Anne E Hultgren, Nicole MF Patras, Jenna Hicks
    Feature Article

    Organizations that fund research are keen to ensure that their grant selection processes are fair and equitable for all applicants. In 2020, the Arnold and Mabel Beckman Foundation introduced blinding to the first stage of the process used to review applications for Beckman Young Investigator (BYI) awards: applicants were instructed to blind the technical proposal in their initial Letter of Intent by omitting their name, gender, gender-identifying pronouns, and institutional information. Here we examine the impact of this change by comparing the data on gender and institutional prestige of the applicants in the first four years of the new policy (BYI award years 2021–2024) with data on the last four years of the old policy (2017–2020). We find that under the new policy, the distribution of applicants invited to submit a full application shifted from those affiliated with institutions regarded as more prestigious to those outside of this group, and that this trend continued through to the final program awards. We did not find evidence of a shift in the distribution of applicants with respect to gender.