1. Biochemistry and Chemical Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Topoisomerase VI senses and exploits both DNA crossings and bends to facilitate strand passage

  1. Timothy J Wendorff
  2. James M Berger  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Johns Hopkins University School of Medicine, United States
Research Article
  • Cited 0
  • Views 555
  • Annotations
Cite as: eLife 2018;7:e31724 doi: 10.7554/eLife.31724

Abstract

Type II topoisomerases manage DNA supercoiling and aid chromosome segregation using a complex, ATP-dependent duplex strand passage mechanism. Type IIB topoisomerases and their homologs support both archaeal/plant viability and meiotic recombination. Topo VI, a prototypical type IIB topoisomerase, comprises two Top6A and two Top6B protomers; how these subunits cooperate to engage two DNA segments and link ATP turnover to DNA transport is poorly understood. Using multiple biochemical approaches, we show that Top6B, which harbors the ATPase activity of topo VI, recognizes and exploits the DNA crossings present in supercoiled DNA to stimulate subunit dimerization by ATP. Top6B self-association in turn induces extensive DNA bending, which is needed to support duplex cleavage by Top6A. Our observations explain how topo VI tightly coordinates DNA crossover recognition and ATP binding with strand scission, providing useful insights into the operation of type IIB topoisomerases and related meiotic recombination and GHKL ATPase machineries.

Article and author information

Author details

  1. Timothy J Wendorff

    Biophysics Graduate Program, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. James M Berger

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    jberge29@jhmi.edu
    Competing interests
    James M Berger, Reviewing editor, eLife.
    ORCID icon 0000-0003-0666-1240

Funding

National Institutes of Health (RO1 CA077373)

  • James M Berger

National Science Foundation (DGE 1106400)

  • Timothy J Wendorff

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Geeta J Narlikar, Reviewing Editor, University of California, San Francisco, United States

Publication history

  1. Received: September 3, 2017
  2. Accepted: March 28, 2018
  3. Accepted Manuscript published: March 29, 2018 (version 1)

Copyright

© 2018, Wendorff & Berger

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 555
    Page views
  • 168
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Robert A Battaglia, Ailong Ke
    Insight
    1. Biochemistry and Chemical Biology
    Susanne Müller et al.
    Feature Article