Stochastic tuning of gene expression enables cellular adaptation in the absence of pre-existing regulatory circuitry

Abstract

Cells adapt to familiar changes in their environment by activating predefined regulatory programs that establish adaptive gene expression states. These hard-wired pathways, however, may be inadequate for adaptation to environments never encountered before. Here, we reveal evidence for an alternative mode of gene regulation that enables adaptation to adverse conditions without relying on external sensory information or genetically predetermined cis-regulation. Instead, individual genes achieve optimal expression levels through a stochastic search for improved fitness. By focusing on improving the overall health of the cell, the proposed stochastic tuning mechanism discovers global gene expression states that are fundamentally new and yet optimized for novel environments. We provide experimental evidence for stochastic tuning in the adaptation of Saccharomyces cerevisiae to laboratory-engineered environments that are foreign to its native gene-regulatory network. Stochastic tuning operates locally at individual gene promoters, and its efficacy is modulated by perturbations to chromatin modification machinery.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Peter L Freddolino

    Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5821-4226
  2. Jamie Yang

    Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amir Momen-Roknabadi

    Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Saeed Tavazoie

    Department of Systems Biology, Columbia University, New York, United States
    For correspondence
    st2744@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2183-4162

Funding

NIH Office of the Director (8DP1ES022578)

  • Saeed Tavazoie

National Institutes of Health (K99 (GM097033-01A1))

  • Peter L Freddolino

National Institutes of Health (MSTP)

  • Jamie Yang

National Institutes of Health (R01-AI077562)

  • Saeed Tavazoie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Freddolino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,215
    views
  • 711
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter L Freddolino
  2. Jamie Yang
  3. Amir Momen-Roknabadi
  4. Saeed Tavazoie
(2018)
Stochastic tuning of gene expression enables cellular adaptation in the absence of pre-existing regulatory circuitry
eLife 7:e31867.
https://doi.org/10.7554/eLife.31867

Share this article

https://doi.org/10.7554/eLife.31867