Dopamine-dependent scaling of subthalamic gamma bursts with movement velocity in patients with Parkinson's disease

  1. Roxanne Lofredi  Is a corresponding author
  2. Wolf-Julian Neumann
  3. Antje Bock
  4. Andreas Horn
  5. Julius Huebl
  6. Sandy Siegert
  7. Gerd-Helge Schneider
  8. Joachim K Krauss
  9. Andrea A Kühn  Is a corresponding author
  1. Charité - Universitätsmedizin Berlin, Germany
  2. Medizinische Hochschule Hannover, Germany

Abstract

Gamma synchronization increases during movement and scales with kinematic parameters. Here, disease-specific characteristics of this synchronization and the dopamine-dependence of its scaling in Parkinson's disease are investigated. In 16 patients undergoing deep brain stimulation surgery, movements of different velocities revealed that subthalamic gamma power peaked in the sensorimotor part of the subthalamic nucleus, correlated positively with maximal velocity and negatively with symptom severity. These effects relied on movement-related bursts of transient synchrony in the gamma band. The gamma burst rate highly correlated with averaged power, increased gradually with larger movements and correlated with symptom severity. In the dopamine-depleted state, gamma power and burst rate significantly decreased, particularly when peak velocity was slower than ON medication. Burst amplitude and duration were unaffected by the medication state. We propose that insufficient recruitment of fast gamma bursts during movement may underlie bradykinesia as one of the cardinal symptoms in Parkinson's disease.

Article and author information

Author details

  1. Roxanne Lofredi

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    For correspondence
    roxanne.lofredi@charite.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1845-8250
  2. Wolf-Julian Neumann

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6758-9708
  3. Antje Bock

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Andreas Horn

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Julius Huebl

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Sandy Siegert

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Gerd-Helge Schneider

    Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Joachim K Krauss

    Department of Neurosurgery, Medizinische Hochschule Hannover, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Andrea A Kühn

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    For correspondence
    andrea.kuehn@charite.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (DFG KFO247)

  • Andrea A Kühn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Eilon Vaadia, The Hebrew University of Jerusalem, Israel

Ethics

Human subjects: All participants provided written informed conset which was approved by the local review boeards of the Charité - Universitätsmedizin Berlin and Hannover Medical School and in accordance with the standards set by the Declaration of Helsinki (EA2/071/08).

Version history

  1. Received: September 11, 2017
  2. Accepted: January 29, 2018
  3. Accepted Manuscript published: February 1, 2018 (version 1)
  4. Version of Record published: February 20, 2018 (version 2)

Copyright

© 2018, Lofredi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,828
    views
  • 410
    downloads
  • 96
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roxanne Lofredi
  2. Wolf-Julian Neumann
  3. Antje Bock
  4. Andreas Horn
  5. Julius Huebl
  6. Sandy Siegert
  7. Gerd-Helge Schneider
  8. Joachim K Krauss
  9. Andrea A Kühn
(2018)
Dopamine-dependent scaling of subthalamic gamma bursts with movement velocity in patients with Parkinson's disease
eLife 7:e31895.
https://doi.org/10.7554/eLife.31895

Share this article

https://doi.org/10.7554/eLife.31895

Further reading

    1. Medicine
    Jinjing Chen, Ruoyu Wang ... Jongsook Kemper
    Research Article

    The nuclear receptor, farnesoid X receptor (FXR/NR1H4), is increasingly recognized as a promising drug target for metabolic diseases, including nonalcoholic steatohepatitis (NASH). Protein-coding genes regulated by FXR are well known, but whether FXR also acts through regulation of long non-coding RNAs (lncRNAs), which vastly outnumber protein-coding genes, remains unknown. Utilizing RNA-seq and global run-on sequencing (GRO-seq) analyses in mouse liver, we found that FXR activation affects the expression of many RNA transcripts from chromatin regions bearing enhancer features. Among these we discovered a previously unannotated liver-enriched enhancer-derived lncRNA (eRNA), termed FXR-induced non-coding RNA (Fincor). We show that Fincor is specifically induced by the hammerhead-type FXR agonists, including GW4064 and tropifexor. CRISPR/Cas9-mediated liver-specific knockdown of Fincor in dietary NASH mice reduced the beneficial effects of tropifexor, an FXR agonist currently in clinical trials for NASH and primary biliary cholangitis (PBC), indicating that amelioration of liver fibrosis and inflammation in NASH treatment by tropifexor is mediated in part by Fincor. Overall, our findings highlight that pharmacological activation of FXR by hammerhead-type agonists induces a novel eRNA, Fincor, contributing to the amelioration of NASH in mice. Fincor may represent a new drug target for addressing metabolic disorders, including NASH.

    1. Cell Biology
    2. Medicine
    Chun Wang, Khushpreet Kaur ... Gabriel Mbalaviele
    Research Article

    Chemotherapy is a widely used treatment for a variety of solid and hematological malignancies. Despite its success in improving the survival rate of cancer patients, chemotherapy causes significant toxicity to multiple organs, including the skeleton, but the underlying mechanisms have yet to be elucidated. Using tumor-free mouse models, which are commonly used to assess direct off-target effects of anti-neoplastic therapies, we found that doxorubicin caused massive bone loss in wild-type mice, a phenotype associated with increased number of osteoclasts, leukopenia, elevated serum levels of danger-associated molecular patterns (DAMPs; e.g. cell-free DNA and ATP) and cytokines (e.g. IL-1β and IL-18). Accordingly, doxorubicin activated the absent in melanoma (AIM2) and NLR family pyrin domain containing 3 (NLRP3) inflammasomes in macrophages and neutrophils, causing inflammatory cell death pyroptosis and NETosis, which correlated with its leukopenic effects. Moreover, the effects of this chemotherapeutic agent on cytokine secretion, cell demise, and bone loss were attenuated to various extent in conditions of AIM2 and/or NLRP3 insufficiency. Thus, we found that inflammasomes are key players in bone loss caused by doxorubicin, a finding that may inspire the development of a tailored adjuvant therapy that preserves the quality of this tissue in patients treated with this class of drugs.