The yeast H+-ATPase Pma1 promotes Rag/Gtr-dependent TORC1 activation in response to H+-coupled nutrient uptake

  1. Elie Saliba
  2. Minoas Evangelinos
  3. Christos Gournas
  4. Florent Corrillon
  5. Isabelle Georis
  6. Bruno Andre  Is a corresponding author
  1. Université Libre de Bruxelles (ULB), Belgium
  2. Institut de Recherches Microbiologiques Jean-Marie Wiame, Belgium

Abstract

The yeast Target of Rapamycin Complex 1 (TORC1) plays a central role in controlling growth. How amino acids and other nutrients stimulate its activity via the Rag/Gtr GTPases remains poorly understood. We here report that the signal triggering Rag/Gtr-dependent TORC1 activation upon amino-acid uptake is the coupled H+ influx catalyzed by amino-acid/H+ symporters. H+-dependent uptake of other nutrients, ionophore-mediated H+ diffusion, and inhibition of the vacuolar V-ATPase also activate TORC1. As the increase in cytosolic H+ elicited by these processes stimulates the compensating H+-export activity of the plasma membrane H+-ATPase (Pma1), we have examined whether this major ATP-consuming enzyme might be involved in TORC1 control. We find that when the endogenous Pma1 is replaced with a plant H+-ATPase, H+ influx or increase fails to activate TORC1. Our results show that H+ influx coupled to nutrient uptake stimulates TORC1 activity and that Pma1 is a key actor in this mechanism.

Article and author information

Author details

  1. Elie Saliba

    IBMM - Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  2. Minoas Evangelinos

    IBMM - Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Christos Gournas

    IBMM - Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Florent Corrillon

    IBMM - Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Gosselies, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Isabelle Georis

    Institut de Recherches Microbiologiques Jean-Marie Wiame, Anderlecht, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Bruno Andre

    IBMM - Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Gosselies, Belgium
    For correspondence
    Bruno.Andre@ulb.ac.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7683-9150

Funding

Fonds De La Recherche Scientifique - FNRS (3.4.592.08.F)

  • Bruno Andre

Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (21074048)

  • Elie Saliba

Fonds De La Recherche Scientifique - FNRS (22396499)

  • Christos Gournas

Fonds De La Recherche Scientifique - FNRS (30274494)

  • Minoas Evangelinos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Saliba et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,619
    views
  • 701
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elie Saliba
  2. Minoas Evangelinos
  3. Christos Gournas
  4. Florent Corrillon
  5. Isabelle Georis
  6. Bruno Andre
(2018)
The yeast H+-ATPase Pma1 promotes Rag/Gtr-dependent TORC1 activation in response to H+-coupled nutrient uptake
eLife 7:e31981.
https://doi.org/10.7554/eLife.31981

Share this article

https://doi.org/10.7554/eLife.31981

Further reading

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.

    1. Cell Biology
    Ling Cheng, Ian Meliala ... Mikael Björklund
    Research Article

    Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR. Depletion of PEBP1 impaired mitochondrial ISR activation by reducing eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and subsequent ISR gene expression, which was independent of PEBP1’s role in inhibiting the RAF/MEK/ERK pathway. Consistently, overexpression of PEBP1 potentiated ISR activation by heme-regulated inhibitor (HRI) kinase, the principal eIF2α kinase in the mitochondrial ISR pathway. Real-time interaction analysis using luminescence complementation in live cells revealed an interaction between PEBP1 and eIF2α, which was disrupted by eIF2α S51 phosphorylation. These findings suggest a role for PEBP1 in amplifying mitochondrial stress signals, thereby facilitating an effective cellular response to mitochondrial dysfunction. Therefore, PEBP1 may be a potential therapeutic target for diseases associated with mitochondrial dysfunction.