1. Computational and Systems Biology
  2. Neuroscience
Download icon

Stochastic resonance mediates the state-dependent effect of periodic stimulation on cortical alpha oscillations

  1. Jérémie Lefebvre  Is a corresponding author
  2. Axel Hutt
  3. Flavio Frohlich
  1. Krembil Research Institute, Canada
  2. Deutscher Wetterdienst, Germany
  3. University of North Carolina at Chapel Hill, United States
Research Article
  • Cited 18
  • Views 1,619
  • Annotations
Cite this article as: eLife 2017;6:e32054 doi: 10.7554/eLife.32054


Brain stimulation can be used to engage and modulate rhythmic activity in brain networks. However, the outcomes of brain stimulation are shaped by behavioral states and endogenous fluctuations in brain activity. To better understand how this intrinsic oscillatory activity controls the susceptibility of the brain to stimulation, we analyzed a computational model of the thalamo-cortical system in two distinct states (rest, task-engaged) to identify the mechanisms by which endogenous alpha oscillations (8Hz-12Hz) are modulated by periodic stimulation. Our analysis shows that the different responses to stimulation observed experimentally in these brain states can be explained by a passage through a bifurcation combined with stochastic resonance - a mechanism by which irregular fluctuations amplify the response of a nonlinear system to weak periodic signals. Indeed, our findings suggest that modulating brain oscillations is best achieved in states of low endogenous rhythmic activity and that irregular state-dependent fluctuations in thalamic inputs shape the susceptibility of cortical population to periodic stimulation.

Article and author information

Author details

  1. Jérémie Lefebvre

    Krembil Research Institute, Toronto, Canada
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0369-4565
  2. Axel Hutt

    Data Assimilation, Deutscher Wetterdienst, Offenbach am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Flavio Frohlich

    Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.


Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-06662)

  • Jérémie Lefebvre

National Institute of Mental Health (R01MH111889)

  • Flavio Frohlich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Saskia Haegens, Columbia University College of Physicians and Surgeons, United States

Publication history

  1. Received: September 15, 2017
  2. Accepted: December 22, 2017
  3. Accepted Manuscript published: December 27, 2017 (version 1)
  4. Version of Record published: March 1, 2018 (version 2)


© 2017, Lefebvre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,619
    Page views
  • 330
  • 18

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Abel Torres-Espín et al.
    Research Article Updated


    Predicting neurological recovery after spinal cord injury (SCI) is challenging. Using topological data analysis, we have previously shown that mean arterial pressure (MAP) during SCI surgery predicts long-term functional recovery in rodent models, motivating the present multicenter study in patients.


    Intra-operative monitoring records and neurological outcome data were extracted (n = 118 patients). We built a similarity network of patients from a low-dimensional space embedded using a non-linear algorithm, Isomap, and ensured topological extraction using persistent homology metrics. Confirmatory analysis was conducted through regression methods.


    Network analysis suggested that time outside of an optimum MAP range (hypotension or hypertension) during surgery was associated with lower likelihood of neurological recovery at hospital discharge. Logistic and LASSO (least absolute shrinkage and selection operator) regression confirmed these findings, revealing an optimal MAP range of 76–[104-117] mmHg associated with neurological recovery.


    We show that deviation from this optimal MAP range during SCI surgery predicts lower probability of neurological recovery and suggest new targets for therapeutic intervention.


    NIH/NINDS: R01NS088475 (ARF); R01NS122888 (ARF); UH3NS106899 (ARF); Department of Veterans Affairs: 1I01RX002245 (ARF), I01RX002787 (ARF); Wings for Life Foundation (ATE, ARF); Craig H. Neilsen Foundation (ARF); and DOD: SC150198 (MSB); SC190233 (MSB); DOE: DE-AC02-05CH11231 (DM).

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Cathrine Bergh et al.
    Research Article Updated

    Ligand-gated ion channels conduct currents in response to chemical stimuli, mediating electrochemical signaling in neurons and other excitable cells. For many channels, the details of gating remain unclear, partly due to limited structural data and simulation timescales. Here, we used enhanced sampling to simulate the pH-gated channel GLIC, and construct Markov state models (MSMs) of gating. Consistent with new functional recordings, we report in oocytes, our analysis revealed differential effects of protonation and mutation on free-energy wells. Clustering of closed- versus open-like states enabled estimation of open probabilities and transition rates, while higher-order clustering affirmed conformational trends in gating. Furthermore, our models uncovered state- and protonation-dependent symmetrization. This demonstrates the applicability of MSMs to map energetic and conformational transitions between ion-channel functional states, and how they reproduce shifts upon activation or mutation, with implications for modeling neuronal function and developing state-selective drugs.