Preferential assembly of heteromeric kainate and AMPA receptor amino terminal domains

  1. Huaying Zhao  Is a corresponding author
  2. Suvendu Lomash
  3. Sagar Chittori
  4. Carla Glasser
  5. Mark L Mayer  Is a corresponding author
  6. Peter Schuck  Is a corresponding author
  1. National Institute of Biomedical Imaging and Bioengineering Institutes of Health, National Institutes of Health, United States
  2. National Institute of Child Health and Human Development, National Institutes of Health, United States
7 figures, 2 tables and 1 additional file

Figures

Sedimentation velocity analysis of the homo-dimerization of GluK1 (A), GluK2 (B), GluK3 (C), and GluK4 (D).

Panel A: Sedimentation coefficient distributions c(s) derived from FDS-SV data of samples with 0.2 nM or 1 nM DyLight 488-labeled GluK1 mixed with 0.3 nM - 40 µM unlabeled GluK1 at the concentrations …

https://doi.org/10.7554/eLife.32056.003
Hetero-dimerization of GluK1 and GluK2 ATD.

Panel A: Sedimentation coefficient distribution c(s) based on FDS-SV data of 1 nM DyLight 488-labeled GluK1 mixed with 0.3–20 µM unlabeled GluK2. A GluK1 control sample without GluK2 (grey) is …

https://doi.org/10.7554/eLife.32056.004
Sedimentation velocity analysis of the hetero-dimerization of GluK1 and GluK2 with GluK4 and GluK5.

Panel A: Sedimentation coefficient distributions c(s) determined from analysis of FDS-SV data for titration of 50–200 pM DyLight 488-labeled GluK1 with 0.2 nM - 1.2 µM unlabeled GluK4. Panel B: c(s)

https://doi.org/10.7554/eLife.32056.005
Homomeric assembly of AMPA receptor ATDs.

Panels A and B: Sedimentation coefficient distributions c(s) derived from FDS-SV data of a dilution series of 100 pM - 1.2 µM EGFP-GluA1 (A) and 500 pM - 1.2 µM EGFP-GluA4. Panels C and D: Isotherms …

https://doi.org/10.7554/eLife.32056.006
Heteromeric assembly of AMPA receptor ATDs.

Shown are sedimentation coefficient distributions c(s) for the titrations of 0.2 or 0.5 nM EGFP-GluA1 with 0.2 nM - 1.2 µM unlabeled GluA2 (Panel A), 0.5 nM EGFP-GluA1 1 with 0.2 nM - 3 µM unlabeled …

https://doi.org/10.7554/eLife.32056.008
Isotherms for heteromeric assembly of AMPA receptor ATDs.

Weighted-average sw as a function of concentration were extracted from the sedimentation coefficient distributions shown in Figure 5, and fit with a competitive homo- and hetero-dimerization model …

https://doi.org/10.7554/eLife.32056.009
Diagram of specific preferential binding of AMPAR and KaiR ATDs.

The Gibbs free energy for various dimers at 20C under the current experimental conditions was calculated from the KD-values in Table 1 and Table 2. Panel A: Graphic presentation of the …

https://doi.org/10.7554/eLife.32056.010

Tables

Table 1
KD-values for kainate receptor amino-terminal domain dimer assembly.
https://doi.org/10.7554/eLife.32056.002
DL-GluK1DL-GluK2DL-GluK3DL-GluK4DL-GluK5
UL GluK11.2 µM [0.8, 1.7]
UL GluK21.8 µM [1.5, 2.2]163 nM [113, 235]9.4 nM [8, 11]
DL GluK3<50 pM*
UL GluK4146 nM [116, 184]57 nM [46, 71]>1 mM$
UL GluK518 nM [15,22]12 nM [10, 14]350 µM%
  1. Values in brackets indicate 95% confidence limits. Abbreviations: UL, Unlabeled protein; DL, DyLight 488-labeled protein; EGFP, EGFP fusion protein. *KD determination from FDS-SV dilution series. $KD determined from SV ABS data. %KD previously determined from SV ABS data for unlabeled GluK5 (Kumar et al., 2011).

Table 2
KD-values for AMPA receptor amino-terminal domain dimer assembly.
https://doi.org/10.7554/eLife.32056.007
EGFP-GluA1DL-GluA2UL-GluA3EGFP-GluA4
UL GluA128.4 nM [14, 58]
UL GluA22.9 nM [1.6, 5.6]21.1 nM* [17, 27]32.6 nM [19, 59]
UL GluA38.3 nM [6, 12]1.3 nM [1.0, 1.7]5.2 µM# [1.7, 14]91 nM [60,137]
UL GluA462 nM [15, 218]318 nM [145, 730]
  1. Values in brackets indicate 95% confidence limits. Abbreviations: UL, Unlabeled protein; DL, DyLight 488-labeled protein; EGFP, EGFP fusion protein. *Similar estimates were obtained separately in previous studies for GluA2 ATD: 24 nM in (Zhao et al., 2016); 16.5–25.4 nM in (Zhao et al., 2013d); 8.3–12 nM in (Zhao et al., 2012). # Value from (Zhao et al., 2012).

Additional files

Download links