Specialized impulse conduction pathway in the alligator heart

  1. Bjarke Jensen
  2. Bastiaan JD Boukens
  3. Dane A Crossley
  4. Justin Conner
  5. Rajiv Ahmet Mohan
  6. Karel van Duijvenboden
  7. Alex V Postma
  8. Christopher R Gloschat
  9. Ruth M Elsey
  10. David Sedmera
  11. Igor R Efimov
  12. Vincent M Christoffels  Is a corresponding author
  1. Academic Medical Center, University of Amsterdam, Netherlands
  2. University of North Texas, United States
  3. George Washington University, United States
  4. Rockefeller Wildlife Refuge, United States
  5. Charles University, Czech Republic

Abstract

Mammals and birds have a specialized cardiac atrioventricular conduction system enabling rapid activation of both ventricles. This system may have evolved together with high heart rates to support their endothermic state (warm-bloodedness), and is seemingly lacking in ectothermic vertebrates from which first mammals then birds independently evolved. Here, we studied the conduction system in crocodiles (Alligator mississippiensis), the only ectothermic vertebrates with a full ventricular septum. We identified homologues of mammalian conduction system markers (Tbx3-Tbx5, Scn5a, Gja5, Nppa-Nppb) and show the presence of a functional atrioventricular bundle. The ventricular Purkinje network, however, was absent and slow ventricular conduction relied on trabecular myocardium, as it does in other ectothermic vertebrates. We propose the evolution of the atrioventricular bundle followed full ventricular septum formation prior to the development of high heart rates and endothermy. In contrast, the evolution of the ventricular Purkinje network is strongly associated with high heart rates and endothermy.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Bjarke Jensen

    Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7750-8035
  2. Bastiaan JD Boukens

    Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Dane A Crossley

    Department of Biological Sciences, University of North Texas, Denton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Justin Conner

    Department of Biological Sciences, University of North Texas, Denton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rajiv Ahmet Mohan

    Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3622-1759
  6. Karel van Duijvenboden

    Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Alex V Postma

    Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Christopher R Gloschat

    Department of Biomedical Engineering, George Washington University, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ruth M Elsey

    Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. David Sedmera

    Institute of Anatomy, First Medical Faculty, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  11. Igor R Efimov

    Department of Biomedical Engineering, George Washington University, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1483-5039
  12. Vincent M Christoffels

    Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
    For correspondence
    v.m.christoffels@amc.uva.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4131-2636

Funding

Carlsbergfondet

  • Bjarke Jensen

Fondation Leducq

  • Vincent M Christoffels

CVON HUSTCARE

  • Vincent M Christoffels

Netherlands Heart Foundation (COBRA3)

  • Vincent M Christoffels

Netherlands Heart Foundation (2016T047)

  • Bastiaan JD Boukens

CVON2014-2018 (CONCOR-genes)

  • Alex V Postma

CVON2014-2018 (CONCOR-genes)

  • Vincent M Christoffels

Czech Science Foundation (16-02972S)

  • David Sedmera

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The investigation conforms with the guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 8523, revised 1996) and was approved by the Institutional Animal Studies Care and Use Committee of the University of North Texas (IACUC #1403-04).

Reviewing Editor

  1. Deborah Yelon, University of California, San Diego, United States

Publication history

  1. Received: September 19, 2017
  2. Accepted: March 20, 2018
  3. Accepted Manuscript published: March 22, 2018 (version 1)
  4. Version of Record published: May 8, 2018 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,773
    Page views
  • 282
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bjarke Jensen
  2. Bastiaan JD Boukens
  3. Dane A Crossley
  4. Justin Conner
  5. Rajiv Ahmet Mohan
  6. Karel van Duijvenboden
  7. Alex V Postma
  8. Christopher R Gloschat
  9. Ruth M Elsey
  10. David Sedmera
  11. Igor R Efimov
  12. Vincent M Christoffels
(2018)
Specialized impulse conduction pathway in the alligator heart
eLife 7:e32120.
https://doi.org/10.7554/eLife.32120
  1. Further reading

Further reading

    1. Cell Biology
    2. Developmental Biology
    Ivonne Margarete Sehring et al.
    Research Article

    Successful regeneration requires the coordinated execution of multiple cellular responses to injury. In amputated zebrafish fins, mature osteoblasts dedifferentiate, migrate towards the injury and form proliferative osteogenic blastema cells. We show that osteoblast migration is preceded by cell elongation and alignment along the proximodistal axis, which require actomyosin, but not microtubule turnover. Surprisingly, osteoblast dedifferentiation and migration can be uncoupled. Using pharmacological and genetic interventions, we found that NF-ĸB and retinoic acid signalling regulate dedifferentiation without affecting migration, while the complement system and actomyosin dynamics affect migration but not dedifferentiation. Furthermore, by removing bone at two locations within a fin ray, we established an injury model containing two injury sites. We found that osteoblasts dedifferentiate at and migrate towards both sites, while accumulation of osteogenic progenitor cells and regenerative bone formation only occur at the distal-facing injury. Together, these data indicate that osteoblast dedifferentiation and migration represent generic injury responses that are differentially regulated and can occur independently of each other and of regenerative growth. We conclude that successful fin bone regeneration appears to involve the coordinated execution of generic and regeneration-specific responses of osteoblasts to injury.

    1. Developmental Biology
    2. Neuroscience
    Ashtyn T Wiltbank et al.
    Research Article

    Efficient neurotransmission is essential for organism survival and is enhanced by myelination. However, the genes that regulate myelin and myelinating glial cell development have not been fully characterized. Data from our lab and others demonstrates that cd59, which encodes for a small GPI-anchored glycoprotein, is highly expressed in developing zebrafish, rodent, and human oligodendrocytes (OLs) and Schwann cells (SCs), and that patients with CD59 dysfunction develop neurological dysfunction during early childhood. Yet, the function of Cd59 in the developing nervous system is currently undefined. In this study, we demonstrate that cd59 is expressed in a subset of developing SCs. Using cd59 mutant zebrafish, we show that developing SCs proliferate excessively and nerves may have reduced myelin volume, altered myelin ultrastructure, and perturbed node of Ranvier assembly. Finally, we demonstrate that complement activity is elevated in cd59 mutants and that inhibiting inflammation restores SC proliferation, myelin volume, and nodes of Ranvier to wildtype levels. Together, this work identifies Cd59 and developmental inflammation as key players in myelinating glial cell development, highlighting the collaboration between glia and the innate immune system to ensure normal neural development.