Specialized impulse conduction pathway in the alligator heart

  1. Bjarke Jensen
  2. Bastiaan JD Boukens
  3. Dane A Crossley
  4. Justin Conner
  5. Rajiv Ahmet Mohan
  6. Karel van Duijvenboden
  7. Alex V Postma
  8. Christopher R Gloschat
  9. Ruth M Elsey
  10. David Sedmera
  11. Igor R Efimov
  12. Vincent M Christoffels  Is a corresponding author
  1. Academic Medical Center, University of Amsterdam, Netherlands
  2. University of North Texas, United States
  3. George Washington University, United States
  4. Rockefeller Wildlife Refuge, United States
  5. Charles University, Czech Republic

Abstract

Mammals and birds have a specialized cardiac atrioventricular conduction system enabling rapid activation of both ventricles. This system may have evolved together with high heart rates to support their endothermic state (warm-bloodedness), and is seemingly lacking in ectothermic vertebrates from which first mammals then birds independently evolved. Here, we studied the conduction system in crocodiles (Alligator mississippiensis), the only ectothermic vertebrates with a full ventricular septum. We identified homologues of mammalian conduction system markers (Tbx3-Tbx5, Scn5a, Gja5, Nppa-Nppb) and show the presence of a functional atrioventricular bundle. The ventricular Purkinje network, however, was absent and slow ventricular conduction relied on trabecular myocardium, as it does in other ectothermic vertebrates. We propose the evolution of the atrioventricular bundle followed full ventricular septum formation prior to the development of high heart rates and endothermy. In contrast, the evolution of the ventricular Purkinje network is strongly associated with high heart rates and endothermy.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Bjarke Jensen

    Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7750-8035
  2. Bastiaan JD Boukens

    Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Dane A Crossley

    Department of Biological Sciences, University of North Texas, Denton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Justin Conner

    Department of Biological Sciences, University of North Texas, Denton, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rajiv Ahmet Mohan

    Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3622-1759
  6. Karel van Duijvenboden

    Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Alex V Postma

    Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Christopher R Gloschat

    Department of Biomedical Engineering, George Washington University, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ruth M Elsey

    Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. David Sedmera

    Institute of Anatomy, First Medical Faculty, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  11. Igor R Efimov

    Department of Biomedical Engineering, George Washington University, Washington DC, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1483-5039
  12. Vincent M Christoffels

    Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
    For correspondence
    v.m.christoffels@amc.uva.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4131-2636

Funding

Carlsbergfondet

  • Bjarke Jensen

Fondation Leducq

  • Vincent M Christoffels

CVON HUSTCARE

  • Vincent M Christoffels

Netherlands Heart Foundation (COBRA3)

  • Vincent M Christoffels

Netherlands Heart Foundation (2016T047)

  • Bastiaan JD Boukens

CVON2014-2018 (CONCOR-genes)

  • Alex V Postma

CVON2014-2018 (CONCOR-genes)

  • Vincent M Christoffels

Czech Science Foundation (16-02972S)

  • David Sedmera

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The investigation conforms with the guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 8523, revised 1996) and was approved by the Institutional Animal Studies Care and Use Committee of the University of North Texas (IACUC #1403-04).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,181
    views
  • 329
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bjarke Jensen
  2. Bastiaan JD Boukens
  3. Dane A Crossley
  4. Justin Conner
  5. Rajiv Ahmet Mohan
  6. Karel van Duijvenboden
  7. Alex V Postma
  8. Christopher R Gloschat
  9. Ruth M Elsey
  10. David Sedmera
  11. Igor R Efimov
  12. Vincent M Christoffels
(2018)
Specialized impulse conduction pathway in the alligator heart
eLife 7:e32120.
https://doi.org/10.7554/eLife.32120

Share this article

https://doi.org/10.7554/eLife.32120

Further reading

    1. Developmental Biology
    Bingbing Wu, Chenghong Long ... Chao Liu
    Research Article

    The structural integrity of the sperm is crucial for male fertility, defects in sperm head-tail linkage and flagellar axoneme are associated with acephalic spermatozoa syndrome (ASS) and the multiple morphological abnormalities of the sperm flagella (MMAF). Notably, impaired head-tail coupling apparatus (HTCA) often accompanies defects in the flagellum structure, however, the molecular mechanisms underlying this phenomenon remain elusive. Here, we identified an evolutionarily conserved coiled-coil domain-containing (CCDC) protein, CCDC113, and found the disruption of CCDC113 produced spermatozoa with disorganized sperm flagella and HTCA, which caused male infertility. Further analysis revealed that CCDC113 could bind to CFAP57 and CFAP91, and function as an adaptor protein for the connection of radial spokes, nexin-dynein regulatory complex (N-DRC), and doublet microtubules (DMTs) in the sperm axoneme. Moreover, CCDC113 was identified as a structural component of HTCA, collaborating with SUN5 and CENTLEIN to connect sperm head to tail during spermiogenesis. Together, our studies reveal that CCDC113 serve as a critical hub for sperm axoneme and HTCA stabilization in mice, providing insights into the potential pathogenesis of infertility associated with human CCDC113 mutations.

    1. Cell Biology
    2. Developmental Biology
    Yi Sun, Zhe Chen ... Chengtian Zhao
    Short Report

    How cells regulate the size of their organelles remains a fundamental question in cell biology. Cilia, with their simple structure and surface localization, provide an ideal model for investigating organelle size control. However, most studies on cilia length regulation are primarily performed on several single-celled organisms. In contrast, the mechanism of length regulation in cilia across diverse cell types within multicellular organisms remains a mystery. Similar to humans, zebrafish contain diverse types of cilia with variable lengths. Taking advantage of the transparency of zebrafish embryos, we conducted a comprehensive investigation into intraflagellar transport (IFT), an essential process for ciliogenesis. By generating a transgenic line carrying Ift88-GFP transgene, we observed IFT in multiple types of cilia with varying lengths. Remarkably, cilia exhibited variable IFT speeds in different cell types, with longer cilia exhibiting faster IFT speeds. This increased IFT speed in longer cilia is likely not due to changes in common factors that regulate IFT, such as motor selection, BBSome proteins, or tubulin modification. Interestingly, longer cilia in the ear cristae tend to form larger IFT compared to shorter spinal cord cilia. Reducing the size of IFT particles by knocking down Ift88 slowed IFT speed and resulted in the formation of shorter cilia. Our study proposes an intriguing model of cilia length regulation via controlling IFT speed through the modulation of the size of the IFT complex. This discovery may provide further insights into our understanding of how organelle size is regulated in higher vertebrates.