A subcortical circuit linking the cerebellum to the basal ganglia engaged in vocal learning

  1. Ludivine Pidoux  Is a corresponding author
  2. Pascale Le Blanc
  3. Carole Levenes
  4. Arthur Leblois
  1. Paris Descartes University, Institute for Neuroscience and Cognition, France

Abstract

Speech is a complex sensorimotor skill, and vocal learning involves both the basal ganglia and the cerebellum. These subcortical structures interact indirectly through their respective loops with thalamo-cortical and brainstem networks, and directly via subcortical pathways, but the role of their interaction during sensorimotor learning remains undetermined. While songbirds and their song-dedicated basal ganglia-thalamo-cortical circuitry offer an unique opportunity to study subcortical circuits involved in vocal learning, the cerebellar contribution to avian song learning remains unknown. We demonstrate that the cerebellum provides a strong input to the song-related basal ganglia nucleus in zebra finches. Cerebellar signals are transmitted to the basal ganglia via a disynaptic connection through the thalamus and then conveyed to their cortical target and to the premotor nucleus controlling song production. Finally, cerebellar lesions impair juvenile song learning, opening new opportunities to investigate how subcortical interactions between the cerebellum and basal ganglia contribute to sensorimotor learning.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Ludivine Pidoux

    CNRS, UMR 8119, Paris Descartes University, Institute for Neuroscience and Cognition, Paris, France
    For correspondence
    ludivine.pidoux@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5268-4067
  2. Pascale Le Blanc

    CNRS, UMR 8119, Paris Descartes University, Institute for Neuroscience and Cognition, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Carole Levenes

    CNRS, UMR 8119, Paris Descartes University, Institute for Neuroscience and Cognition, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Arthur Leblois

    CNRS, UMR 8119, Paris Descartes University, Institute for Neuroscience and Cognition, Paris, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche

  • Arthur Leblois

City of Paris, Emergence Program

  • Arthur Leblois

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal care and experiments were carried out in accordance with the European directives (2010-63-UE) and the French guidelines (project 02260.01, Ministère de l'Agriculture et de la Forêt). Experiments were approved by Paris Descartes University ethics committee (Permit Number: 13-092).

Copyright

© 2018, Pidoux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,027
    views
  • 671
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ludivine Pidoux
  2. Pascale Le Blanc
  3. Carole Levenes
  4. Arthur Leblois
(2018)
A subcortical circuit linking the cerebellum to the basal ganglia engaged in vocal learning
eLife 7:e32167.
https://doi.org/10.7554/eLife.32167

Share this article

https://doi.org/10.7554/eLife.32167

Further reading

    1. Neuroscience
    Jean-François Brunet
    Review Article

    Historically, the creation of the parasympathetic division of the autonomic nervous system of the vertebrates is inextricably linked to the unification of the cranial and sacral autonomic outflows. There is an intriguing disproportion between the entrenchment of the notion of a ‘cranio-sacral’ pathway, which informs every textbook schematic of the autonomic nervous system since the early XXth century, and the wobbliness of its two roots: an anatomical detail overinterpreted by Walter Holbrook Gaskell (the ‘gap’ between the lumbar and sacral outflows), on which John Newport Langley grafted a piece of physiology (a supposed antagonism of these two outflows on external genitals), repeatedly questioned since, to little avail. I retrace the birth of a flawed scientific concept (the cranio-sacral outflow) and the way in which it ossified instead of dissipated. Then, I suggest that the critique of the ‘cranio-sacral outflow’ invites, in turn, a radical deconstruction of the very notion of a ‘parasympathetic’ outflow, and a more realistic description of the autonomic nervous system.

    1. Developmental Biology
    2. Neuroscience
    Mahima Bose, Ishita Talwar ... Shubha Tole
    Research Article

    In the developing vertebrate central nervous system, neurons and glia typically arise sequentially from common progenitors. Here, we report that the transcription factor Forkhead Box G1 (Foxg1) regulates gliogenesis in the mouse neocortex via distinct cell-autonomous roles in progenitors and postmitotic neurons that regulate different aspects of the gliogenic FGF signalling pathway. We demonstrate that loss of Foxg1 in cortical progenitors at neurogenic stages causes premature astrogliogenesis. We identify a novel FOXG1 target, the pro-gliogenic FGF pathway component Fgfr3, which is suppressed by FOXG1 cell-autonomously to maintain neurogenesis. Furthermore, FOXG1 can also suppress premature astrogliogenesis triggered by the augmentation of FGF signalling. We identify a second novel function of FOXG1 in regulating the expression of gliogenic cues in newborn neocortical upper-layer neurons. Loss of FOXG1 in postmitotic neurons non-autonomously enhances gliogenesis in the progenitors via FGF signalling. These results fit well with the model that newborn neurons secrete cues that trigger progenitors to produce the next wave of cell types, astrocytes. If FGF signalling is attenuated in Foxg1 null progenitors, they progress to oligodendrocyte production. Therefore, loss of FOXG1 transitions the progenitor to a gliogenic state, producing either astrocytes or oligodendrocytes depending on FGF signalling levels. Our results uncover how FOXG1 integrates extrinsic signalling via the FGF pathway to regulate the sequential generation of neurons, astrocytes, and oligodendrocytes in the cerebral cortex.