Learning: The cerebellum influences vocal timing

We are starting to understand how the cerebellum contributes to vocal learning in songbirds.
  1. Court Hull  Is a corresponding author
  1. Duke University, United States

Spoken language is a fundamental human skill that relies on vocal learning. Many species are able to produce vocalizations, but only a small number are considered vocal learners. For example, humans learn to speak by imitating the speech of others, and juvenile passerine songbirds learn to sing by mimicking adult birds (Bolhuis et al., 2010).

In both humans and songbirds, the brain circuits essential for vocal learning connect the cortex (a highly evolved brain structure involved in associative learning) and the basal ganglia (a more evolutionarily ancient brain region involved in reinforcement learning; Brainard and Doupe, 2013; Mooney, 2009). In humans, another part of the brain, called the cerebellum or ‘little brain’, may also have an important role in vocal learning. This region is highly active during speech, and children with cerebellar dysfunction often take much longer to learn how to speak (Ziegler and Ackermann, 2017). Moreover, patients with cerebellar disease or damage often suffer from ‘ataxic dysarthria’, a motor speech disorder that affects the timing and clarity of speech (Ackermann, 2008). A better knowledge of how cerebellar circuits interact with the basal ganglia and the cortex is thus critical for understanding how vocal learning is established, and how it is disrupted by injury or disease.

Birds are commonly used to study vocal learning, but the role of the cerebellum in birdsong has so far been unclear. Now, in eLife, Ludivine Pidoux and colleagues at Paris Descartes University report that this structure is also essential for the timing aspects of vocal learning in zebra finches (Pidoux et al., 2018).

Studies in humans and non-human primates have shown that the cerebellum contributes to motor control and motor learning through several pathways. In addition to descending pathways to the spinal cord, the cerebellum connects to the cortex and the basal ganglia via the thalamus, a central structure that relays motor and sensory signals to and from the cortex (Strick et al., 2009; Bostan and Strick, 2018). Since an anatomical connection between the cerebellum and the basal ganglia is also present in songbirds, it was important to test whether the cerebellum could influence the activity of basal ganglia and participate in song learning (Person et al., 2008).

Using a series of elegant anatomical, electrophysiological and pharmacological approaches, Pidoux et al. demonstrate for the first time that this cerebellar pathway has an important role in vocal learning in birds. Stimulating a cluster of neurons in the cerebellum known as the dentate nucleus, activated neurons that participate in song learning within the basal ganglia (Area X) via the thalamus (Figure 1). This activity also propagated via the thalamus to various areas in the cortex, including certain motor areas controlling the vocal chords.

Brain circuits for vocal learning in songbirds and humans.

Songbird circuits that support vocal learning (left), also labeled according to their homologous structures in humans (right). These include the cortex (gray and dark gray), the basal ganglia (Area X/BG; red) and the thalamus (green and light green). Pidoux et al. have revealed a functional connection (bold arrows) from an area in the cerebellum, the dentate nucleus (DN; blue), through the dorsal thalamic zone in the thalamus (DTZ; green) to Area X (red) in the basal ganglia. Abbreviations: DLM medial portion of the dorsolateral nucleus of the anterior thalamus; HVC song-related motor nuclei, used as proper name; LMAN lateral magnocellular nucleus of the anterior nidopallium; RA robust nucleus of the arcopallium.

This pathway appears to be the only route for the dentate nucleus to modulate the basal ganglia. When the activity was blocked in thedorsal thalamic zone connecting the cerebellum and Area X, neurons in the basal ganglia were prevented from responding to stimulation in the cerebellum. In contrast, blocking the pathways connecting the cortex with Area X did not affect the activity of this region. These results suggest that the cerebellum can influence the circuits in the basal ganglia required for vocal learning, implying that it could play a key role in this process.

Indeed, when this cerebellar pathway was disrupted, juvenile birds were less able to copy the songs of adults. This manipulation particularly affected aspects of song timing. However, this was not the case when the same pathway was disrupted in adult birds, suggesting that the cerebellum is specifically relevant for learning key aspects of song timing. This is consistent with the well-known role of the cerebellum in learned motor timing (Ivry and Spencer, 2004; Mauk et al., 2000). Together, these results provide a complete functional circuit pathway from the cerebellum to the basal ganglia to the premotor neurons involved in song production.

By identifying the specific role of the cerebellum and its circuits in regulating how the timing of a song is learned, Pidoux et al. have shed new light on the neural basis of vocal learning. However, we are only starting to understand how the cerebellum contributes to vocal learning. Next, we need to discover exactly how this brain region shapes the timing of the learned songs. Meanwhile, the ‘little brain’ must be recognized as a key player in the network of circuits that enable vocal learning.

References

Article and author information

Author details

  1. Court Hull

    Court Hull is in the Department of Neurobiology, Duke University, Durham, United States

    For correspondence
    hull@neuro.duke.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0360-8367

Publication history

  1. Version of Record published: August 28, 2018 (version 1)

Copyright

© 2018, Hull

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,636
    Page views
  • 161
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Court Hull
(2018)
Learning: The cerebellum influences vocal timing
eLife 7:e40447.
https://doi.org/10.7554/eLife.40447

Further reading

    1. Medicine
    2. Neuroscience
    Guido I Guberman et al.
    Research Article Updated

    Background:

    The heterogeneity of white matter damage and symptoms in concussion has been identified as a major obstacle to therapeutic innovation. In contrast, most diffusion MRI (dMRI) studies on concussion have traditionally relied on group-comparison approaches that average out heterogeneity. To leverage, rather than average out, concussion heterogeneity, we combined dMRI and multivariate statistics to characterize multi-tract multi-symptom relationships.

    Methods:

    Using cross-sectional data from 306 previously concussed children aged 9–10 from the Adolescent Brain Cognitive Development Study, we built connectomes weighted by classical and emerging diffusion measures. These measures were combined into two informative indices, the first representing microstructural complexity, the second representing axonal density. We deployed pattern-learning algorithms to jointly decompose these connectivity features and 19 symptom measures.

    Results:

    Early multi-tract multi-symptom pairs explained the most covariance and represented broad symptom categories, such as a general problems pair, or a pair representing all cognitive symptoms, and implicated more distributed networks of white matter tracts. Further pairs represented more specific symptom combinations, such as a pair representing attention problems exclusively, and were associated with more localized white matter abnormalities. Symptom representation was not systematically related to tract representation across pairs. Sleep problems were implicated across most pairs, but were related to different connections across these pairs. Expression of multi-tract features was not driven by sociodemographic and injury-related variables, as well as by clinical subgroups defined by the presence of ADHD. Analyses performed on a replication dataset showed consistent results.

    Conclusions:

    Using a double-multivariate approach, we identified clinically-informative, cross-demographic multi-tract multi-symptom relationships. These results suggest that rather than clear one-to-one symptom-connectivity disturbances, concussions may be characterized by subtypes of symptom/connectivity relationships. The symptom/connectivity relationships identified in multi-tract multi-symptom pairs were not apparent in single-tract/single-symptom analyses. Future studies aiming to better understand connectivity/symptom relationships should take into account multi-tract multi-symptom heterogeneity.

    Funding:

    Financial support for this work came from a Vanier Canada Graduate Scholarship from the Canadian Institutes of Health Research (G.I.G.), an Ontario Graduate Scholarship (S.S.), a Restracomp Research Fellowship provided by the Hospital for Sick Children (S.S.), an Institutional Research Chair in Neuroinformatics (M.D.), as well as a Natural Sciences and Engineering Research Council CREATE grant (M.D.).

    1. Neuroscience
    Stefanie Engert et al.
    Research Article

    Gustatory sensory neurons detect caloric and harmful compounds in potential food and convey this information to the brain to inform feeding decisions. To examine the signals that gustatory neurons transmit and receive, we reconstructed gustatory axons and their synaptic sites in the adult Drosophila melanogaster brain, utilizing a whole-brain electron microscopy volume. We reconstructed 87 gustatory projections from the proboscis labellum in the right hemisphere and 57 from the left, representing the majority of labellar gustatory axons. Gustatory neurons contain a nearly equal number of interspersed pre-and post-synaptic sites, with extensive synaptic connectivity among gustatory axons. Morphology- and connectivity-based clustering revealed six distinct groups, likely representing neurons recognizing different taste modalities. The vast majority of synaptic connections are between neurons of the same group. This study resolves the anatomy of labellar gustatory projections, reveals that gustatory projections are segregated based on taste modality, and uncovers synaptic connections that may alter the transmission of gustatory signals.