Neurovascular sequestration in paediatric P.falciparum malaria is visible clinically in the retina

  1. Valentina Barrera  Is a corresponding author
  2. Ian JC MacCormick
  3. Gabriela Czanner
  4. Paul Stephenson Hiscott
  5. Valerie Ann White
  6. Alister G Craig
  7. Nicholas Alexander Venton Beare
  8. Lucy Hazel Culshaw
  9. Yalin Zheng
  10. Simon Charles Biddolph
  11. Danny A Milner
  12. Steve Kamiza
  13. Malcolm E Molyneux
  14. Terrie E Taylor
  15. Simon Peter Harding
  1. University of Liverpool, United Kingdom
  2. University of British Columbia, Canada
  3. Liverpool School of Tropical Medicine, United Kingdom
  4. Royal Liverpool University Hospital, United Kingdom
  5. American Society for Clinical Pathology, United States
  6. University of Malawi College of Medicine, Malawi
  7. Malawi-Liverpool-Wellcome Trust Research Programme, Malawi

Abstract

Retinal vessel changes and retinal whitening, distinctive features of malarial retinopathy, can be directly observed during routine eye examination in children with P.falciparum cerebral malaria. We investigated their clinical significance and underlying mechanisms through linked clinical, clinicopathological and image analysis studies. Orange vessels and severe foveal whitening (clinical examination, n=817, OR, 95% CI: 2.90, 1.96-4.30; 3.4, 1.8-6.3, both p<0.001), and arteriolar involvement by intravascular filling defects (angiographic image analysis, n=260, 2.81, 1.17-6.72, p<0.02) were strongly associated with death. Orange vessels had dense sequestration of late stage parasitised red cells (histopathology, n=29; sensitivity 0.97, specificity 0.89) involving 360° of the lumen circumference, with altered protein expression in blood-retinal barrier cells and marked loss/disruption of pericytes. Retinal whitening was topographically associated with tissue response to hypoxia. Severe neurovascular sequestration is visible at the bedside and is a marker of severe disease useful for diagnosis and management.

Article and author information

Author details

  1. Valentina Barrera

    Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
    For correspondence
    v.barrera@liverpool.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0515-5901
  2. Ian JC MacCormick

    Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Gabriela Czanner

    Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Paul Stephenson Hiscott

    Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Valerie Ann White

    Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Alister G Craig

    Liverpool School of Tropical Medicine, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Nicholas Alexander Venton Beare

    Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Lucy Hazel Culshaw

    Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Yalin Zheng

    Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Simon Charles Biddolph

    National Specialist Ophthalmic Pathology Service, Royal Liverpool University Hospital, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Danny A Milner

    Center for Global Health, American Society for Clinical Pathology, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Steve Kamiza

    Department of Histopathology, University of Malawi College of Medicine, Blantyre, Malawi
    Competing interests
    The authors declare that no competing interests exist.
  13. Malcolm E Molyneux

    Malawi-Liverpool-Wellcome Trust Research Programme, Blantyre, Malawi
    Competing interests
    The authors declare that no competing interests exist.
  14. Terrie E Taylor

    Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
    Competing interests
    The authors declare that no competing interests exist.
  15. Simon Peter Harding

    Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (#092668/Z/10/Z)

  • Simon Peter Harding

NIH Clinical Center (#5R01AI034969-11)

  • Terrie E Taylor

Wellcome (#074125)

  • Malcolm E Molyneux

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sara Healy, National Institutes of Health

Ethics

Human subjects: The core and specific studies all received approval from the Research Ethics Committee at the University of Malawi College of Medicine P. 11/07/593, Michigan State University and the Royal Liverpool and Broadgreen University Hospital Trust n. 3690; research was performed in accordance with the Declaration of Helsinki. Written consent for the clinical eye examination was sought in English or in the language of the parent/guardian who gave permission on the patient's behalf. If a patient died, additional informed written consent for autopsy was sought from the parent/guardian.

Version history

  1. Received: September 28, 2017
  2. Accepted: March 24, 2018
  3. Accepted Manuscript published: March 26, 2018 (version 1)
  4. Version of Record published: April 13, 2018 (version 2)

Copyright

© 2018, Barrera et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,693
    views
  • 188
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Valentina Barrera
  2. Ian JC MacCormick
  3. Gabriela Czanner
  4. Paul Stephenson Hiscott
  5. Valerie Ann White
  6. Alister G Craig
  7. Nicholas Alexander Venton Beare
  8. Lucy Hazel Culshaw
  9. Yalin Zheng
  10. Simon Charles Biddolph
  11. Danny A Milner
  12. Steve Kamiza
  13. Malcolm E Molyneux
  14. Terrie E Taylor
  15. Simon Peter Harding
(2018)
Neurovascular sequestration in paediatric P.falciparum malaria is visible clinically in the retina
eLife 7:e32208.
https://doi.org/10.7554/eLife.32208

Share this article

https://doi.org/10.7554/eLife.32208

Further reading

    1. Medicine
    2. Neuroscience
    Matthew F Wipperman, Allen Z Lin ... Olivier Harari
    Tools and Resources

    Gait is impaired in musculoskeletal conditions, such as knee arthropathy. Gait analysis is used in clinical practice to inform diagnosis and to monitor disease progression or intervention response. However, clinical gait analysis relies on subjective visual observation of walking, as objective gait analysis has not been possible within clinical settings due to the expensive equipment, large-scale facilities, and highly trained staff required. Relatively low-cost wearable digital insoles may offer a solution to these challenges. In this work, we demonstrate how a digital insole measuring osteoarthritis-specific gait signatures yields similar results to the clinical gait-lab standard. To achieve this, we constructed a machine learning model, trained on force plate data collected in participants with knee arthropathy and controls. This model was highly predictive of force plate data from a validation set (area under the receiver operating characteristics curve [auROC] = 0.86; area under the precision-recall curve [auPR] = 0.90) and of a separate, independent digital insole dataset containing control and knee osteoarthritis subjects (auROC = 0.83; auPR = 0.86). After showing that digital insole derived gait characteristics are comparable to traditional gait measurements, we next showed that a single stride of raw sensor time series data could be accurately assigned to each subject, highlighting that individuals using digital insoles can be identified by their gait characteristics. This work provides a framework for a promising alternative to traditional clinical gait analysis methods, adds to the growing body of knowledge regarding wearable technology analytical pipelines, and supports clinical development of at-home gait assessments, with the potential to improve the ease, frequency, and depth of patient monitoring.

    1. Medicine
    Anika Shimonty, Fabrizio Pin ... Lynda F Bonewald
    Research Article

    Irisin, released from exercised muscle, has been shown to have beneficial effects on numerous tissues but its effects on bone are unclear. We found significant sex and genotype differences in bone from wildtype (WT) mice compared to mice lacking Fndc5 (knockout [KO]), with and without calcium deficiency. Despite their bone being indistinguishable from WT females, KO female mice were partially protected from osteocytic osteolysis and osteoclastic bone resorption when allowed to lactate or when placed on a low-calcium diet. Male KO mice have more but weaker bone compared to WT males, and when challenged with a low-calcium diet lost more bone than WT males. To begin to understand responsible molecular mechanisms, osteocyte transcriptomics was performed. Osteocytes from WT females had greater expression of genes associated with osteocytic osteolysis and osteoclastic bone resorption compared to WT males which had greater expression of genes associated with steroid and fatty acid metabolism. Few differences were observed between female KO and WT osteocytes, but with a low-calcium diet, the KO females had lower expression of genes responsible for osteocytic osteolysis and osteoclastic resorption than the WT females. Male KO osteocytes had lower expression of genes associated with steroid and fatty acid metabolism, but higher expression of genes associated with bone resorption compared to male WT. In conclusion, irisin plays a critical role in the development of the male but not the female skeleton and protects male but not female bone from calcium deficiency. We propose irisin ensures the survival of offspring by targeting the osteocyte to provide calcium in lactating females, a novel function for this myokine.