1. Microbiology and Infectious Disease
Download icon

Extreme heterogeneity of influenza virus infection in single cells

  1. Alistair B Russell
  2. Cole Trapnell
  3. Jesse D Bloom  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States
  2. University of Washington, United States
Research Article
  • Cited 84
  • Views 9,059
  • Annotations
Cite this article as: eLife 2018;7:e32303 doi: 10.7554/eLife.32303

Abstract

Viral infection can dramatically alter a cell's transcriptome. However, these changes have mostly been studied by bulk measurements on many cells. Here we use single-cell mRNA sequencing to examine the transcriptional consequences of influenza virus infection. We find extremely wide cell-to-cell variation in the productivity of viral transcription - viral transcripts comprise less than a percent of total mRNA in many infected cells, but a few cells derive over half their mRNA from virus. Some infected cells fail to express at least one viral gene, but this gene absence only partially explains variation in viral transcriptional load. Despite variation in viral load, the relative abundances of viral mRNAs are fairly consistent across infected cells. Activation of innate immune pathways is rare, but some cellular genes co-vary in abundance with the amount of viral mRNA. Overall, our results highlight the complexity of viral infection at the level of single cells.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Alistair B Russell

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5342-2309
  2. Cole Trapnell

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jesse D Bloom

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    jbloom@fredhutch.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1267-3408

Funding

National Institute of General Medical Sciences (R01GM102198)

  • Jesse D Bloom

National Institute of Allergy and Infectious Diseases (AI127897)

  • Jesse D Bloom

Damon Runyon Cancer Research Foundation (Postdoctoral Fellowship)

  • Alistair B Russell

Burroughs Wellcome Fund (Young Investigator in the Pathogenesis of Infectious Diseases)

  • Jesse D Bloom

Simons Foundation (Faculty Scholar Award)

  • Jesse D Bloom

Howard Hughes Medical Institute (Faculty Scholar Award)

  • Jesse D Bloom

Eunice Kennedy Shriver National Institute of Child Health and Human Development (DP2OD020868)

  • Cole Trapnell

William Keck Foundation (Keck Foundation Grant)

  • Cole Trapnell

Alfred P. Sloan Foundation (Sloan Research Fellowship)

  • Cole Trapnell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arup K Chakraborty, Massachusetts Institute of Technology, United States

Publication history

  1. Received: September 26, 2017
  2. Accepted: January 31, 2018
  3. Accepted Manuscript published: February 16, 2018 (version 1)
  4. Version of Record published: February 26, 2018 (version 2)

Copyright

© 2018, Russell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,059
    Page views
  • 1,590
    Downloads
  • 84
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Conrad W Mullineaux, Annegret Wilde
    Insight

    The cyanobacterium Synechocystis secretes a specific sulphated polysaccharide to form floating cell aggregates.

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Kaisei Maeda et al.
    Research Article

    Extracellularpolysaccharides of bacteria contribute to biofilm formation, stress tolerance, and infectivity. Cyanobacteria, the oxygenic photoautotrophic bacteria, uniquely produce sulfated extracellular polysaccharides among bacteria to support phototrophic biofilms. In addition, sulfated polysaccharides of cyanobacteria and other organisms have been focused as beneficial biomaterial. However, very little is known about their biosynthesis machinery and function in cyanobacteria. Here, we found that the model cyanobacterium, Synechocystis sp. strain PCC 6803, formed bloom-like cell aggregates embedded in sulfated extracellular polysaccharides (designated as synechan) and identified whole set of genes responsible for synechan biosynthesis and its transcriptional regulation, thereby suggesting a model for the synechan biosynthesis apparatus. Because similar genes are found in many cyanobacterial genomes with wide variation, our findings may lead elucidation of various sulfated polysaccharides, their functions, and their potential application in biotechnology.