Extreme heterogeneity of influenza virus infection in single cells

  1. Alistair B Russell
  2. Cole Trapnell
  3. Jesse D Bloom  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States
  2. University of Washington, United States

Abstract

Viral infection can dramatically alter a cell's transcriptome. However, these changes have mostly been studied by bulk measurements on many cells. Here we use single-cell mRNA sequencing to examine the transcriptional consequences of influenza virus infection. We find extremely wide cell-to-cell variation in the productivity of viral transcription - viral transcripts comprise less than a percent of total mRNA in many infected cells, but a few cells derive over half their mRNA from virus. Some infected cells fail to express at least one viral gene, but this gene absence only partially explains variation in viral transcriptional load. Despite variation in viral load, the relative abundances of viral mRNAs are fairly consistent across infected cells. Activation of innate immune pathways is rare, but some cellular genes co-vary in abundance with the amount of viral mRNA. Overall, our results highlight the complexity of viral infection at the level of single cells.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Alistair B Russell

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5342-2309
  2. Cole Trapnell

    Department of Genome Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jesse D Bloom

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    jbloom@fredhutch.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1267-3408

Funding

National Institute of General Medical Sciences (R01GM102198)

  • Jesse D Bloom

National Institute of Allergy and Infectious Diseases (AI127897)

  • Jesse D Bloom

Damon Runyon Cancer Research Foundation (Postdoctoral Fellowship)

  • Alistair B Russell

Burroughs Wellcome Fund (Young Investigator in the Pathogenesis of Infectious Diseases)

  • Jesse D Bloom

Simons Foundation (Faculty Scholar Award)

  • Jesse D Bloom

Howard Hughes Medical Institute (Faculty Scholar Award)

  • Jesse D Bloom

Eunice Kennedy Shriver National Institute of Child Health and Human Development (DP2OD020868)

  • Cole Trapnell

William Keck Foundation (Keck Foundation Grant)

  • Cole Trapnell

Alfred P. Sloan Foundation (Sloan Research Fellowship)

  • Cole Trapnell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Russell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,127
    views
  • 2,033
    downloads
  • 281
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alistair B Russell
  2. Cole Trapnell
  3. Jesse D Bloom
(2018)
Extreme heterogeneity of influenza virus infection in single cells
eLife 7:e32303.
https://doi.org/10.7554/eLife.32303

Share this article

https://doi.org/10.7554/eLife.32303