1. Developmental Biology
  2. Neuroscience
Download icon

Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex

  1. Marta Florio
  2. Michael Heide
  3. Anneline Pinson
  4. Holger Brandl
  5. Mareike Albert
  6. Sylke Winkler
  7. Pauline Wimberger
  8. Wieland B Huttner  Is a corresponding author
  9. Michael Hiller  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. Universitätsklinikum Carl Gustav Carus, Germany
Tools and Resources
  • Cited 25
  • Views 4,094
  • Annotations
Cite this article as: eLife 2018;7:e32332 doi: 10.7554/eLife.32332

Abstract

Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that fifteen human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL, demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution.

Article and author information

Author details

  1. Marta Florio

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael Heide

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Anneline Pinson

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Holger Brandl

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1911-8570
  5. Mareike Albert

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Sylke Winkler

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Pauline Wimberger

    Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Wieland B Huttner

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    huttner@mpi-cbg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4143-7201
  9. Michael Hiller

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    hiller@mpi-cbg.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

Max-Planck-Gesellschaft

  • Wieland B Huttner
  • Michael Hiller

Deutsche Forschungsgemeinschaft (SFB655 A2)

  • Wieland B Huttner

European Research Council (250197)

  • Wieland B Huttner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed in accordance with German animal welfare laws and overseen by the institutional review board (reference number TVV2015/05). C57BL/6J mice were maintained in specific pathogen-free conditions in the MPI-CBG animal facility.

Human subjects: Human fetal brain tissue (12-13 weeks post conception (wpc)) was obtained from the Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Carl Gustav Carus of the Technische Universität Dresden with informed written maternal consent followed by elective pregnancy termination. Research involving human tissue was approved by the Ethical Review Committee of the Universitätsklinikum Carl Gustav Carus of the Technische Universität Dresden (reference number: EK100052004). In addition, research was approved by the Institutional Review Board of the Max Planck Institute of Molecular Cell Biology and Genetics.

Reviewing Editor

  1. Joseph G Gleeson, Howard Hughes Medical Institute, The Rockefeller University, United States

Publication history

  1. Received: September 27, 2017
  2. Accepted: March 9, 2018
  3. Accepted Manuscript published: March 21, 2018 (version 1)
  4. Version of Record published: April 13, 2018 (version 2)

Copyright

© 2018, Florio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,094
    Page views
  • 753
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Plant Biology
    André Kuhn et al.
    Research Article
    1. Developmental Biology
    Ying-Jou Lee et al.
    Research Article