Measuring ligand efficacy at the mu-opioid receptor using a conformational biosensor

  1. Kathryn E Livingston
  2. Jacob P Mahoney
  3. Aashish Manglik
  4. Roger Sunahara
  5. John R Traynor  Is a corresponding author
  1. University of Michigan, United States
  2. University of California, San Francisco, United States
  3. University of California, San Diego, United States

Abstract

The intrinsic efficacy of orthosteric ligands acting at G protein-coupled receptors (GPCRs) reflects their ability to stabilize active receptor states (R*) and is a major determinant of their physiological effects. Here we present a direct way to quantify the efficacy of ligands by measuring the binding of a R*-specific biosensor to purified receptor employing interferometry. As an example, we use the mu-opioid receptor (µ-OR), a prototypic class A GPCR, and its active state sensor, nanobody-39 (Nb39). We demonstrate that ligands vary in their ability to recruit Nb39 to µ-OR and describe methadone, loperamide, and PZM21 as ligands that support unique R* conformation(s) of µ-OR. We further show that positive allosteric modulators of µ-OR promote formation of R* in addition to enhancing promotion by orthosteric agonists. Finally, we demonstrate that the technique can be utilized with heterotrimeric G protein. The method is cell-free, signal transduction-independent and is generally applicable to GPCRs.

Data availability

All data generated and analyzed during the study are included in the manuscript and supporting files. Source files have been provided for Fig 3.

Article and author information

Author details

  1. Kathryn E Livingston

    Department of Pharmacology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jacob P Mahoney

    Department of Pharmacology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aashish Manglik

    Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Roger Sunahara

    Department of Pharmacology, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John R Traynor

    Department of Pharmacology, University of Michigan, Ann Arbor, United States
    For correspondence
    jtraynor@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1849-8316

Funding

National Institutes of Health (T32 DA007267)

  • Kathryn E Livingston

American Heart Association (13PRE17110027)

  • Jacob P Mahoney

National Institutes of Health (T32GM007767)

  • Jacob P Mahoney

National Institutes of Health (R01 DA03339)

  • John R Traynor

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Volker Dötsch, J.W. Goethe-University, Germany

Version history

  1. Received: October 5, 2017
  2. Accepted: May 26, 2018
  3. Accepted Manuscript published: June 22, 2018 (version 1)
  4. Version of Record published: July 12, 2018 (version 2)

Copyright

© 2018, Livingston et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,489
    views
  • 749
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kathryn E Livingston
  2. Jacob P Mahoney
  3. Aashish Manglik
  4. Roger Sunahara
  5. John R Traynor
(2018)
Measuring ligand efficacy at the mu-opioid receptor using a conformational biosensor
eLife 7:e32499.
https://doi.org/10.7554/eLife.32499

Share this article

https://doi.org/10.7554/eLife.32499

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.