Measuring ligand efficacy at the mu-opioid receptor using a conformational biosensor

  1. Kathryn E Livingston
  2. Jacob P Mahoney
  3. Aashish Manglik
  4. Roger Sunahara
  5. John R Traynor  Is a corresponding author
  1. University of Michigan, United States
  2. University of California, San Francisco, United States
  3. University of California, San Diego, United States

Abstract

The intrinsic efficacy of orthosteric ligands acting at G protein-coupled receptors (GPCRs) reflects their ability to stabilize active receptor states (R*) and is a major determinant of their physiological effects. Here we present a direct way to quantify the efficacy of ligands by measuring the binding of a R*-specific biosensor to purified receptor employing interferometry. As an example, we use the mu-opioid receptor (µ-OR), a prototypic class A GPCR, and its active state sensor, nanobody-39 (Nb39). We demonstrate that ligands vary in their ability to recruit Nb39 to µ-OR and describe methadone, loperamide, and PZM21 as ligands that support unique R* conformation(s) of µ-OR. We further show that positive allosteric modulators of µ-OR promote formation of R* in addition to enhancing promotion by orthosteric agonists. Finally, we demonstrate that the technique can be utilized with heterotrimeric G protein. The method is cell-free, signal transduction-independent and is generally applicable to GPCRs.

Data availability

All data generated and analyzed during the study are included in the manuscript and supporting files. Source files have been provided for Fig 3.

Article and author information

Author details

  1. Kathryn E Livingston

    Department of Pharmacology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jacob P Mahoney

    Department of Pharmacology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aashish Manglik

    Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Roger Sunahara

    Department of Pharmacology, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John R Traynor

    Department of Pharmacology, University of Michigan, Ann Arbor, United States
    For correspondence
    jtraynor@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1849-8316

Funding

National Institutes of Health (T32 DA007267)

  • Kathryn E Livingston

American Heart Association (13PRE17110027)

  • Jacob P Mahoney

National Institutes of Health (T32GM007767)

  • Jacob P Mahoney

National Institutes of Health (R01 DA03339)

  • John R Traynor

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Volker Dötsch, J.W. Goethe-University, Germany

Version history

  1. Received: October 5, 2017
  2. Accepted: May 26, 2018
  3. Accepted Manuscript published: June 22, 2018 (version 1)
  4. Version of Record published: July 12, 2018 (version 2)

Copyright

© 2018, Livingston et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,438
    views
  • 746
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kathryn E Livingston
  2. Jacob P Mahoney
  3. Aashish Manglik
  4. Roger Sunahara
  5. John R Traynor
(2018)
Measuring ligand efficacy at the mu-opioid receptor using a conformational biosensor
eLife 7:e32499.
https://doi.org/10.7554/eLife.32499

Share this article

https://doi.org/10.7554/eLife.32499

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.