TASEP modelling provides a parsimonious explanation for the ability of a single uORF to derepress translation during the Integrated Stress Response

  1. Dmitry E Andreev
  2. Maxim Arnold
  3. Stephen J Kiniry
  4. Gary Loughran
  5. Audrey M Michel
  6. Dmitry Rachinskiy  Is a corresponding author
  7. Pavel V Baranov  Is a corresponding author
  1. University College Cork, Ireland
  2. University of Texas at Dallas, United States

Abstract

Translation initiation is the rate-limiting step of protein synthesis that is downregulated during the Integrated Stress Response (ISR). Previously we demonstrated that most human mRNAs resistant to this inhibition possess translated uORFs, and that in some cases a single uORF is sufficient for the resistance (Andreev et al., 2015). Here we developed a computational model of Initiation Complexes Interference with Elongating Ribosomes (ICIER) to gain insight into the mechanism. We explored the relationship between the flux of scanning ribosomes upstream and downstream of a single uORF depending on uORF features. Paradoxically our analysis predicts that reducing ribosome flux upstream of certain uORFs increases initiation downstream. The model supports the derepression of downstream translation as a general mechanism of uORF-mediated stress resistance. It predicts that stress resistance can be achieved with long slowly decoded uORFs that do not favor translation reinitiation and start with initiators of low leakiness.

Data availability

All data generated during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 to 7.

Article and author information

Author details

  1. Dmitry E Andreev

    School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  2. Maxim Arnold

    Department of Mathematical Sciences, University of Texas at Dallas, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephen J Kiniry

    School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  4. Gary Loughran

    School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2683-5597
  5. Audrey M Michel

    School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  6. Dmitry Rachinskiy

    Department of Mathematical Sciences, University of Texas at Dallas, Dallas, United States
    For correspondence
    Dmitry.Rachinskiy@utdallas.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Pavel V Baranov

    School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
    For correspondence
    p.baranov@ucc.ie
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9017-0270

Funding

Science Foundation Ireland (12/IA/1335))

  • Pavel V Baranov

National Science Foundation (DMS-1413223)

  • Dmitry Rachinskiy

Russian Science Foundation (RSF16-14-10065)

  • Dmitry E Andreev

Irish Research Council

  • Stephen J Kiniry
  • Audrey M Michel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Andreev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,305
    views
  • 287
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dmitry E Andreev
  2. Maxim Arnold
  3. Stephen J Kiniry
  4. Gary Loughran
  5. Audrey M Michel
  6. Dmitry Rachinskiy
  7. Pavel V Baranov
(2018)
TASEP modelling provides a parsimonious explanation for the ability of a single uORF to derepress translation during the Integrated Stress Response
eLife 7:e32563.
https://doi.org/10.7554/eLife.32563

Share this article

https://doi.org/10.7554/eLife.32563

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme - the senescence associated secretory phenotype (SASP) - driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Chromosomes and Gene Expression
    Jake VanBelzen, Bennet Sakelaris ... Jason H Brickner
    Research Article

    Chromatin immunoprecipitation (ChIP-seq) is the most common approach to observe global binding of proteins to DNA in vivo. The occupancy of transcription factors (TFs) from ChIP-seq agrees well with an alternative method, chromatin endogenous cleavage (ChEC-seq2). However, ChIP-seq and ChEC-seq2 reveal strikingly different patterns of enrichment of yeast RNA polymerase II (RNAPII). We hypothesized that this reflects distinct populations of RNAPII, some of which are captured by ChIP-seq and some of which are captured by ChEC-seq2. RNAPII association with enhancers and promoters - predicted from biochemical studies - is detected well by ChEC-seq2 but not by ChIP-seq. Enhancer/promoter-bound RNAPII correlates with transcription levels and matches predicted occupancy based on published rates of enhancer recruitment, preinitiation assembly, initiation, elongation, and termination. The occupancy from ChEC-seq2 allowed us to develop a stochastic model for global kinetics of RNAPII transcription which captured both the ChEC-seq2 data and changes upon chemical-genetic perturbations to transcription. Finally, RNAPII ChEC-seq2 and kinetic modeling suggests that a mutation in the Gcn4 transcription factor that blocks interaction with the NPC destabilizes promoter-associated RNAPII without altering its recruitment to the enhancer.