TASEP modelling provides a parsimonious explanation for the ability of a single uORF to derepress translation during the Integrated Stress Response

  1. Dmitry E Andreev
  2. Maxim Arnold
  3. Stephen J Kiniry
  4. Gary Loughran
  5. Audrey M Michel
  6. Dmitry Rachinskiy  Is a corresponding author
  7. Pavel V Baranov  Is a corresponding author
  1. University College Cork, Ireland
  2. University of Texas at Dallas, United States

Abstract

Translation initiation is the rate-limiting step of protein synthesis that is downregulated during the Integrated Stress Response (ISR). Previously we demonstrated that most human mRNAs resistant to this inhibition possess translated uORFs, and that in some cases a single uORF is sufficient for the resistance (Andreev et al., 2015). Here we developed a computational model of Initiation Complexes Interference with Elongating Ribosomes (ICIER) to gain insight into the mechanism. We explored the relationship between the flux of scanning ribosomes upstream and downstream of a single uORF depending on uORF features. Paradoxically our analysis predicts that reducing ribosome flux upstream of certain uORFs increases initiation downstream. The model supports the derepression of downstream translation as a general mechanism of uORF-mediated stress resistance. It predicts that stress resistance can be achieved with long slowly decoded uORFs that do not favor translation reinitiation and start with initiators of low leakiness.

Data availability

All data generated during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 to 7.

Article and author information

Author details

  1. Dmitry E Andreev

    School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  2. Maxim Arnold

    Department of Mathematical Sciences, University of Texas at Dallas, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephen J Kiniry

    School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  4. Gary Loughran

    School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2683-5597
  5. Audrey M Michel

    School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  6. Dmitry Rachinskiy

    Department of Mathematical Sciences, University of Texas at Dallas, Dallas, United States
    For correspondence
    Dmitry.Rachinskiy@utdallas.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Pavel V Baranov

    School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
    For correspondence
    p.baranov@ucc.ie
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9017-0270

Funding

Science Foundation Ireland (12/IA/1335))

  • Pavel V Baranov

National Science Foundation (DMS-1413223)

  • Dmitry Rachinskiy

Russian Science Foundation (RSF16-14-10065)

  • Dmitry E Andreev

Irish Research Council

  • Stephen J Kiniry
  • Audrey M Michel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Version history

  1. Received: October 17, 2017
  2. Accepted: June 21, 2018
  3. Accepted Manuscript published: June 22, 2018 (version 1)
  4. Version of Record published: July 5, 2018 (version 2)

Copyright

© 2018, Andreev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,236
    views
  • 279
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dmitry E Andreev
  2. Maxim Arnold
  3. Stephen J Kiniry
  4. Gary Loughran
  5. Audrey M Michel
  6. Dmitry Rachinskiy
  7. Pavel V Baranov
(2018)
TASEP modelling provides a parsimonious explanation for the ability of a single uORF to derepress translation during the Integrated Stress Response
eLife 7:e32563.
https://doi.org/10.7554/eLife.32563

Share this article

https://doi.org/10.7554/eLife.32563

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.