Clathrin coat controls synaptic vesicle acidification by blocking vacuolar ATPase activity

  1. Zohreh Farsi
  2. Sindhuja Gowrisankaran
  3. Matija Krunic
  4. Burkhard Rammner
  5. Andrew Woehler
  6. Eileen M Lafer
  7. Carsten Mim
  8. Reinhard Jahn
  9. Ira Milosevic  Is a corresponding author
  1. Max Planck Institute for Biophysical Chemistry, Germany
  2. European Neuroscience Institute (ENI), Germany
  3. Sciloop, Germany
  4. Max Delbrück Center for Molecular Medicine, Germany
  5. University of Texas Health Science Center, United States
  6. Kungliga Tekniska Högskolan, Sweden

Abstract

Newly-formed synaptic vesicles (SVs) are rapidly acidified by vacuolar adenosine triphosphatases (vATPases), generating a proton electrochemical gradient that drives neurotransmitter loading. Clathrin-mediated endocytosis is needed for the formation of new SVs, yet it is unclear when endocytosed vesicles acidify and refill at the synapse. Here, we isolated clathrin-coated vesicles (CCVs) from mouse brain to measure their acidification directly at the single vesicle level. We observed that the ATP-induced acidification of CCVs was strikingly reduced in comparison to SVs. Remarkably, when the coat was removed from CCVs, uncoated vesicles regained ATP-dependent acidification, demonstrating that CCVs contain the functional vATPase, yet its function is inhibited by the clathrin coat. Considering the known structures of the vATPase and clathrin coat, we propose a model in which the formation of the coat surrounds the vATPase and blocks its activity. Such inhibition is likely fundamental for the proper timing of SV refilling.

Data availability

The structure has been deposited with the EMDB-ID #4335.For additional information considering structure please contact Prof Dr Carsten Mim at carsten.mim@ki.se

The following data sets were generated

Article and author information

Author details

  1. Zohreh Farsi

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    No competing interests declared.
  2. Sindhuja Gowrisankaran

    Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), Göttingen, Germany
    Competing interests
    No competing interests declared.
  3. Matija Krunic

    Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), Göttingen, Germany
    Competing interests
    No competing interests declared.
  4. Burkhard Rammner

    Sciloop, Hamburg, Germany
    Competing interests
    No competing interests declared.
  5. Andrew Woehler

    Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    No competing interests declared.
  6. Eileen M Lafer

    Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, United States
    Competing interests
    No competing interests declared.
  7. Carsten Mim

    Department for Biomedical Engineering and Health Solutions, Kungliga Tekniska Högskolan, Huddinge, Sweden
    Competing interests
    No competing interests declared.
  8. Reinhard Jahn

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    Reinhard Jahn, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1542-3498
  9. Ira Milosevic

    Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), Göttingen, Germany
    For correspondence
    imilose@gwdg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6440-3763

Funding

Deutsche Forschungsgemeinschaft (Emmy Noether Young Investigator Award MI-1702/1)

  • Ira Milosevic

Human Frontier Science Program (Young Investigator Grant RGY0074/16)

  • Carsten Mim

Schram Stiftung (T287/25457)

  • Ira Milosevic

Engelhorn Stiftung (Postdoc fellowship)

  • Zohreh Farsi

Synaptic System PhD fellowship (PhD fellowship)

  • Sindhuja Gowrisankaran

National Institutes of Health (GM118933)

  • Eileen M Lafer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were conducted according to the European Guidelines for animal welfare (2010/63/EU) with approval by the Lower Saxony Landesamt fur Verbraucherschutz und Lebensmittelsicherheit (LAVES), registration number 14/1701.

Copyright

© 2018, Farsi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.32569

Further reading

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.