Clathrin coat controls synaptic vesicle acidification by blocking vacuolar ATPase activity

  1. Zohreh Farsi
  2. Sindhuja Gowrisankaran
  3. Matija Krunic
  4. Burkhard Rammner
  5. Andrew Woehler
  6. Eileen M Lafer
  7. Carsten Mim
  8. Reinhard Jahn
  9. Ira Milosevic  Is a corresponding author
  1. Max Planck Institute for Biophysical Chemistry, Germany
  2. European Neuroscience Institute (ENI), Germany
  3. Sciloop, Germany
  4. Max Delbrück Center for Molecular Medicine, Germany
  5. University of Texas Health Science Center, United States
  6. Kungliga Tekniska Högskolan, Sweden

Abstract

Newly-formed synaptic vesicles (SVs) are rapidly acidified by vacuolar adenosine triphosphatases (vATPases), generating a proton electrochemical gradient that drives neurotransmitter loading. Clathrin-mediated endocytosis is needed for the formation of new SVs, yet it is unclear when endocytosed vesicles acidify and refill at the synapse. Here, we isolated clathrin-coated vesicles (CCVs) from mouse brain to measure their acidification directly at the single vesicle level. We observed that the ATP-induced acidification of CCVs was strikingly reduced in comparison to SVs. Remarkably, when the coat was removed from CCVs, uncoated vesicles regained ATP-dependent acidification, demonstrating that CCVs contain the functional vATPase, yet its function is inhibited by the clathrin coat. Considering the known structures of the vATPase and clathrin coat, we propose a model in which the formation of the coat surrounds the vATPase and blocks its activity. Such inhibition is likely fundamental for the proper timing of SV refilling.

Data availability

The structure has been deposited with the EMDB-ID #4335.For additional information considering structure please contact Prof Dr Carsten Mim at carsten.mim@ki.se

The following data sets were generated

Article and author information

Author details

  1. Zohreh Farsi

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    No competing interests declared.
  2. Sindhuja Gowrisankaran

    Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), Göttingen, Germany
    Competing interests
    No competing interests declared.
  3. Matija Krunic

    Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), Göttingen, Germany
    Competing interests
    No competing interests declared.
  4. Burkhard Rammner

    Sciloop, Hamburg, Germany
    Competing interests
    No competing interests declared.
  5. Andrew Woehler

    Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    No competing interests declared.
  6. Eileen M Lafer

    Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, United States
    Competing interests
    No competing interests declared.
  7. Carsten Mim

    Department for Biomedical Engineering and Health Solutions, Kungliga Tekniska Högskolan, Huddinge, Sweden
    Competing interests
    No competing interests declared.
  8. Reinhard Jahn

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    Reinhard Jahn, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1542-3498
  9. Ira Milosevic

    Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), Göttingen, Germany
    For correspondence
    imilose@gwdg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6440-3763

Funding

Deutsche Forschungsgemeinschaft (Emmy Noether Young Investigator Award MI-1702/1)

  • Ira Milosevic

Human Frontier Science Program (Young Investigator Grant RGY0074/16)

  • Carsten Mim

Schram Stiftung (T287/25457)

  • Ira Milosevic

Engelhorn Stiftung (Postdoc fellowship)

  • Zohreh Farsi

Synaptic System PhD fellowship (PhD fellowship)

  • Sindhuja Gowrisankaran

National Institutes of Health (GM118933)

  • Eileen M Lafer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were conducted according to the European Guidelines for animal welfare (2010/63/EU) with approval by the Lower Saxony Landesamt fur Verbraucherschutz und Lebensmittelsicherheit (LAVES), registration number 14/1701.

Reviewing Editor

  1. Margaret S. Robinson, University of Cambridge, United Kingdom

Publication history

  1. Received: October 6, 2017
  2. Accepted: April 7, 2018
  3. Accepted Manuscript published: April 13, 2018 (version 1)
  4. Version of Record published: May 4, 2018 (version 2)

Copyright

© 2018, Farsi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,901
    Page views
  • 697
    Downloads
  • 22
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zohreh Farsi
  2. Sindhuja Gowrisankaran
  3. Matija Krunic
  4. Burkhard Rammner
  5. Andrew Woehler
  6. Eileen M Lafer
  7. Carsten Mim
  8. Reinhard Jahn
  9. Ira Milosevic
(2018)
Clathrin coat controls synaptic vesicle acidification by blocking vacuolar ATPase activity
eLife 7:e32569.
https://doi.org/10.7554/eLife.32569

Further reading

    1. Neuroscience
    Andrea Merseburg et al.
    Research Article

    De novo mutations in voltage- and ligand-gated channels have been associated with an increasing number of cases of developmental and epileptic encephalopathies, which often fail to respond to classic antiseizure medications. Here, we examine two knock-in mouse models replicating de novo sequence variations in the HCN1 voltage-gated channel gene, p.G391D and p.M153I (Hcn1G380D/+ and Hcn1M142I/+ in mouse), associated with severe drug-resistant neonatal- and childhood-onset epilepsy, respectively. Heterozygous mice from both lines displayed spontaneous generalized tonic-clonic seizures. Animals replicating the p.G391D variant had an overall more severe phenotype, with pronounced alterations in the levels and distribution of HCN1 protein, including disrupted targeting to the axon terminals of basket cell interneurons. In line with clinical reports from patients with pathogenic HCN1 sequence variations, administration of the antiepileptic Na+ channel antagonists lamotrigine and phenytoin resulted in the paradoxical induction of seizures in both mouse lines, consistent with an effect to further impair inhibitory neuron function. We also show that these variants can render HCN1 channels unresponsive to classic antagonists, indicating the need to screen mutated channels to identify novel compounds with diverse mechanism of action. Our results underscore the necessity of tailoring effective therapies for specific channel gene variants, and how strongly validated animal models may provide an invaluable tool towards reaching this objective.

    1. Neuroscience
    Danilo Menicucci et al.
    Research Article

    Sleep and plasticity are highly interrelated, as sleep slow oscillations and sleep spindles are associated with consolidation of Hebbian-based processes. However, in adult humans, visual cortical plasticity is mainly sustained by homeostatic mechanisms, for which the role of sleep is still largely unknown. Here we demonstrate that non-REM sleep stabilizes homeostatic plasticity of ocular dominance induced in adult humans by short-term monocular deprivation: the counter-intuitive and otherwise transient boost of the deprived eye was preserved at the morning awakening (>6 hours after deprivation). Subjects exhibiting a stronger boost of the deprived eye after sleep had increased sleep spindle density in frontopolar electrodes, suggesting the involvement of distributed processes. Crucially, the individual susceptibility to visual homeostatic plasticity soon after deprivation correlated with the changes in sleep slow oscillations and spindle power in occipital sites, consistent with a modulation in early occipital visual cortex.