Transmission genetics of drug-resistant hepatitis C virus

  1. Nicholas van Buuren
  2. Timothy L Tellinghuisen
  3. Christopher C Richardson
  4. Karla Kirkegaard  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. The Scripps Research Institute, United States
  3. Dalhousie University, Canada

Abstract

Antiviral development is plagued by drug resistance and genetic barriers to resistance are needed. For HIV and hepatitis C virus (HCV), combination therapy has proved life-saving. The targets of direct-acting antivirals for HCV infection are NS3/4A protease, NS5A phosphoprotein and NS5B polymerase. Differential visualization of drug-resistant and -susceptible RNA genomes within cells revealed that resistant variants of NS3/4A protease and NS5A phosphoprotein are cis-dominant, ensuring their direct selection from complex environments. Confocal microscopy revealed that RNA replication complexes are genome-specific, rationalizing the non-interaction of wild-type and variant products. No HCV antivirals yet display the dominance of drug susceptibility shown for capsid proteins of other viruses. However, effective inhibitors of HCV polymerase exact such high fitness costs for drug resistance that stable genome selection is not observed. Barriers to drug resistance vary with target biochemistry and detailed analysis of these barriers should lead to the use of fewer drugs.

Article and author information

Author details

  1. Nicholas van Buuren

    Department of Genetics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Timothy L Tellinghuisen

    Department of Infectious Diseases, The Scripps Research Institute, Jupiter, United States
    Competing interests
    No competing interests declared.
  3. Christopher C Richardson

    Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
    Competing interests
    No competing interests declared.
  4. Karla Kirkegaard

    Department of Genetics, Stanford University School of Medicine, Stanford, United States
    For correspondence
    karlak@stanford.edu
    Competing interests
    Karla Kirkegaard, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7628-3770

Funding

National Institutes of Health (U19-AI09662)

  • Karla Kirkegaard

Canadian Institutes of Health Research (NCRTP-HepC Postdoctoral Fellowship)

  • Nicholas van Buuren

American Liver Foundation (Postdoctoral Fellowship)

  • Nicholas van Buuren

National Institutes of Health (NIH Director's Pioneer Award)

  • Karla Kirkegaard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, van Buuren et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,993
    views
  • 291
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicholas van Buuren
  2. Timothy L Tellinghuisen
  3. Christopher C Richardson
  4. Karla Kirkegaard
(2018)
Transmission genetics of drug-resistant hepatitis C virus
eLife 7:e32579.
https://doi.org/10.7554/eLife.32579

Share this article

https://doi.org/10.7554/eLife.32579

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Eric V Strobl, Eric Gamazon
    Research Article

    Root causal gene expression levels – or root causal genes for short – correspond to the initial changes to gene expression that generate patient symptoms as a downstream effect. Identifying root causal genes is critical towards developing treatments that modify disease near its onset, but no existing algorithms attempt to identify root causal genes from data. RNA-sequencing (RNA-seq) data introduces challenges such as measurement error, high dimensionality and non-linearity that compromise accurate estimation of root causal effects even with state-of-the-art approaches. We therefore instead leverage Perturb-seq, or high-throughput perturbations with single-cell RNA-seq readout, to learn the causal order between the genes. We then transfer the causal order to bulk RNA-seq and identify root causal genes specific to a given patient for the first time using a novel statistic. Experiments demonstrate large improvements in performance. Applications to macular degeneration and multiple sclerosis also reveal root causal genes that lie on known pathogenic pathways, delineate patient subgroups and implicate a newly defined omnigenic root causal model.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Steven Henikoff, David L Levens
    Insight

    A new method for mapping torsion provides insights into the ways that the genome responds to the torsion generated by RNA polymerase II.