Transmission genetics of drug-resistant hepatitis C virus

  1. Nicholas van Buuren
  2. Timothy L Tellinghuisen
  3. Christopher C Richardson
  4. Karla Kirkegaard  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. The Scripps Research Institute, United States
  3. Dalhousie University, Canada

Abstract

Antiviral development is plagued by drug resistance and genetic barriers to resistance are needed. For HIV and hepatitis C virus (HCV), combination therapy has proved life-saving. The targets of direct-acting antivirals for HCV infection are NS3/4A protease, NS5A phosphoprotein and NS5B polymerase. Differential visualization of drug-resistant and -susceptible RNA genomes within cells revealed that resistant variants of NS3/4A protease and NS5A phosphoprotein are cis-dominant, ensuring their direct selection from complex environments. Confocal microscopy revealed that RNA replication complexes are genome-specific, rationalizing the non-interaction of wild-type and variant products. No HCV antivirals yet display the dominance of drug susceptibility shown for capsid proteins of other viruses. However, effective inhibitors of HCV polymerase exact such high fitness costs for drug resistance that stable genome selection is not observed. Barriers to drug resistance vary with target biochemistry and detailed analysis of these barriers should lead to the use of fewer drugs.

Article and author information

Author details

  1. Nicholas van Buuren

    Department of Genetics, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Timothy L Tellinghuisen

    Department of Infectious Diseases, The Scripps Research Institute, Jupiter, United States
    Competing interests
    No competing interests declared.
  3. Christopher C Richardson

    Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
    Competing interests
    No competing interests declared.
  4. Karla Kirkegaard

    Department of Genetics, Stanford University School of Medicine, Stanford, United States
    For correspondence
    karlak@stanford.edu
    Competing interests
    Karla Kirkegaard, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7628-3770

Funding

National Institutes of Health (U19-AI09662)

  • Karla Kirkegaard

Canadian Institutes of Health Research (NCRTP-HepC Postdoctoral Fellowship)

  • Nicholas van Buuren

American Liver Foundation (Postdoctoral Fellowship)

  • Nicholas van Buuren

National Institutes of Health (NIH Director's Pioneer Award)

  • Karla Kirkegaard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David M Knipe, Harvard Medical School, United States

Version history

  1. Received: October 6, 2017
  2. Accepted: March 22, 2018
  3. Accepted Manuscript published: March 28, 2018 (version 1)
  4. Version of Record published: April 25, 2018 (version 2)
  5. Version of Record updated: November 29, 2018 (version 3)

Copyright

© 2018, van Buuren et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,972
    views
  • 288
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicholas van Buuren
  2. Timothy L Tellinghuisen
  3. Christopher C Richardson
  4. Karla Kirkegaard
(2018)
Transmission genetics of drug-resistant hepatitis C virus
eLife 7:e32579.
https://doi.org/10.7554/eLife.32579

Share this article

https://doi.org/10.7554/eLife.32579

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Yifei Weng, Shiyi Zhou ... Coleen T Murphy
    Research Article

    Cognitive decline is a significant health concern in our aging society. Here, we used the model organism C. elegans to investigate the impact of the IIS/FOXO pathway on age-related cognitive decline. The daf-2 Insulin/IGF-1 receptor mutant exhibits a significant extension of learning and memory span with age compared to wild-type worms, an effect that is dependent on the DAF-16 transcription factor. To identify possible mechanisms by which aging daf-2 mutants maintain learning and memory with age while wild-type worms lose neuronal function, we carried out neuron-specific transcriptomic analysis in aged animals. We observed downregulation of neuronal genes and upregulation of transcriptional regulation genes in aging wild-type neurons. By contrast, IIS/FOXO pathway mutants exhibit distinct neuronal transcriptomic alterations in response to cognitive aging, including upregulation of stress response genes and downregulation of specific insulin signaling genes. We tested the roles of significantly transcriptionally-changed genes in regulating cognitive functions, identifying novel regulators of learning and memory. In addition to other mechanistic insights, a comparison of the aged vs young daf-2 neuronal transcriptome revealed that a new set of potentially neuroprotective genes is upregulated; instead of simply mimicking a young state, daf-2 may enhance neuronal resilience to accumulation of harm and take a more active approach to combat aging. These findings suggest a potential mechanism for regulating cognitive function with age and offer insights into novel therapeutic targets for age-related cognitive decline.

    1. Genetics and Genomics
    Samuel Pattillo Smith, Gregory Darnell ... Lorin Crawford
    Research Article

    LD score regression (LDSC) is a method to estimate narrow-sense heritability from genome-wide association study (GWAS) summary statistics alone, making it a fast and popular approach. In this work, we present interaction-LD score (i-LDSC) regression: an extension of the original LDSC framework that accounts for interactions between genetic variants. By studying a wide range of generative models in simulations, and by re-analyzing 25 well-studied quantitative phenotypes from 349,468 individuals in the UK Biobank and up to 159,095 individuals in BioBank Japan, we show that the inclusion of a cis-interaction score (i.e. interactions between a focal variant and proximal variants) recovers genetic variance that is not captured by LDSC. For each of the 25 traits analyzed in the UK Biobank and BioBank Japan, i-LDSC detects additional variation contributed by genetic interactions. The i-LDSC software and its application to these biobanks represent a step towards resolving further genetic contributions of sources of non-additive genetic effects to complex trait variation.