Abstract

Witnessing another person's suffering elicits vicarious brain activity in areas active when we ourselves are in pain. Whether this activity influences prosocial behavior remains debated. Here participants witnessed a confederate express pain via a reaction of the swatted hand or via a facial expression and could decide to reduce that pain by donating money. Participants donate more money on trials in which the confederate expressed more pain. EEG shows that activity of the SI hand region explains variance in donation; TMS shows that altering this activity interferes with the pain-donation coupling only when pain is expressed by the hand and HD-tDCS that altering SI activity also interferes with pain perception. These experiments show vicarious somatosensory activations contribute to prosocial decision-making and suggest they do so by helping transform observed reactions of affected body-parts into accurate perceptions of pain that are necessary for decision making.

Data availability

fMRI and EEG data have been deposited in Zenodo. Source data files have been provided for all figures

The following data sets were generated

Article and author information

Author details

  1. Selene Gallo

    Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Riccardo Paracampo

    Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Laura Müller-Pinzler

    Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Mario Carlo Severo

    Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7403-819X
  5. Laila Blömer

    Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Carolina Fernandes-Henriques

    Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Anna Henschel

    Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Balint Kalista Lammes

    Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Tatjana Maskaljunas

    Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Judith Suttrup

    Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4034-1534
  11. Alessio Avenanti

    Department of Psychology, University of Bologna, Bologna, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1139-9996
  12. Christian Keysers

    Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Valeria Gazzola

    Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    For correspondence
    v.gazzola@nin.knaw.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0324-0619

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (VIDI: 452-14-015)

  • Valeria Gazzola

Brain and Behavior Research Foundation (NARSAD young investigator 22453)

  • Valeria Gazzola

H2020 European Research Council (ERC-StG-312511)

  • Christian Keysers

Cogito Foundation (R-117/13)

  • Alessio Avenanti

Fundação Bial (298/16)

  • Alessio Avenanti

Cogito Foundation (14-139-R)

  • Alessio Avenanti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All studies have been approved by the Ethics Committee of the University of Amsterdam, the Netherlands.Project identifiers:2016-BC-73942016-BC-71302016-PSY-64852014-EXT-34762014-EXT-3432All participants received monetary compensation and gave their informed consent for participation in the study.

Copyright

© 2018, Gallo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,359
    views
  • 726
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Selene Gallo
  2. Riccardo Paracampo
  3. Laura Müller-Pinzler
  4. Mario Carlo Severo
  5. Laila Blömer
  6. Carolina Fernandes-Henriques
  7. Anna Henschel
  8. Balint Kalista Lammes
  9. Tatjana Maskaljunas
  10. Judith Suttrup
  11. Alessio Avenanti
  12. Christian Keysers
  13. Valeria Gazzola
(2018)
The causal role of the somatosensory cortex in prosocial behaviour
eLife 7:e32740.
https://doi.org/10.7554/eLife.32740

Share this article

https://doi.org/10.7554/eLife.32740

Further reading

    1. Neuroscience
    Hohyun Cho, Markus Adamek ... Peter Brunner
    Tools and Resources

    Determining the presence and frequency of neural oscillations is essential to understanding dynamic brain function. Traditional methods that detect peaks over 1/f noise within the power spectrum fail to distinguish between the fundamental frequency and harmonics of often highly non-sinusoidal neural oscillations. To overcome this limitation, we define fundamental criteria that characterize neural oscillations and introduce the cyclic homogeneous oscillation (CHO) detection method. We implemented these criteria based on an autocorrelation approach to determine an oscillation’s fundamental frequency. We evaluated CHO by verifying its performance on simulated non-sinusoidal oscillatory bursts and validated its ability to determine the fundamental frequency of neural oscillations in electrocorticographic (ECoG), electroencephalographic (EEG), and stereoelectroencephalographic (SEEG) signals recorded from 27 human subjects. Our results demonstrate that CHO outperforms conventional techniques in accurately detecting oscillations. In summary, CHO demonstrates high precision and specificity in detecting neural oscillations in time and frequency domains. The method’s specificity enables the detailed study of non-sinusoidal characteristics of oscillations, such as the degree of asymmetry and waveform of an oscillation. Furthermore, CHO can be applied to identify how neural oscillations govern interactions throughout the brain and to determine oscillatory biomarkers that index abnormal brain function.

    1. Neuroscience
    Jing Li, Chao Ning ... Chuan Zhou
    Research Article

    Female sexual receptivity is essential for reproduction of a species. Neuropeptides play the main role in regulating female receptivity. However, whether neuropeptides regulate female sexual receptivity during the neurodevelopment is unknown. Here, we found the peptide hormone prothoracicotropic hormone (PTTH), which belongs to the insect PG (prothoracic gland) axis, negatively regulated virgin female receptivity through ecdysone during neurodevelopment in Drosophila melanogaster. We identified PTTH neurons as doublesex-positive neurons, they regulated virgin female receptivity before the metamorphosis during the third-instar larval stage. PTTH deletion resulted in the increased EcR-A expression in the whole newly formed prepupae. Furthermore, the ecdysone receptor EcR-A in pC1 neurons positively regulated virgin female receptivity during metamorphosis. The decreased EcR-A in pC1 neurons induced abnormal morphological development of pC1 neurons without changing neural activity. Among all subtypes of pC1 neurons, the function of EcR-A in pC1b neurons was necessary for virgin female copulation rate. These suggested that the changes of synaptic connections between pC1b and other neurons decreased female copulation rate. Moreover, female receptivity significantly decreased when the expression of PTTH receptor Torso was reduced in pC1 neurons. This suggested that PTTH not only regulates female receptivity through ecdysone but also through affecting female receptivity associated neurons directly. The PG axis has similar functional strategy as the hypothalamic–pituitary–gonadal axis in mammals to trigger the juvenile–adult transition. Our work suggests a general mechanism underlying which the neurodevelopment during maturation regulates female sexual receptivity.