Abstract

Many eukaryotic protein kinases are activated by phosphorylation on a specific conserved residue in the regulatory activation loop, a post-translational modification thought to stabilize the active DFG-In state of the catalytic domain. Here we use a battery of spectroscopic methods that track different catalytic elements of the kinase domain to show that the ~100-fold activation of the mitotic kinase Aurora A (AurA) by phosphorylation occurs without a population shift from the DFG-Out to the DFG-In state, and that the activation loop of the activated kinase remains highly dynamic. Instead, molecular dynamics simulations and electron paramagnetic resonance experiments show that phosphorylation triggers a switch within the DFG-In subpopulation from an autoinhibited DFG-In substate to an active DFG-In substate, leading to catalytic activation. This mechanism raises new questions about the functional role of the DFG-Out state in protein kinases.

Article and author information

Author details

  1. Emily F Ruff

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    Competing interests
    No competing interests declared.
  2. Joseph M Muretta

    Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
    Competing interests
    No competing interests declared.
  3. Andrew R Thompson

    Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
    Competing interests
    No competing interests declared.
  4. Eric W Lake

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    Competing interests
    No competing interests declared.
  5. Soreen Cyphers

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    Competing interests
    No competing interests declared.
  6. Steven K Albanese

    Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0973-5030
  7. Sonya M Hanson

    Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8960-5353
  8. Julie M Behr

    Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  9. David D Thomas

    Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, United States
    Competing interests
    No competing interests declared.
  10. John D Chodera

    Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    John D Chodera, is a member of the Scientific Advisory Board for Schrödinger, LLC.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0542-119X
  11. Nicholas M Levinson

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    For correspondence
    nml@umn.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4338-8087

Funding

National Institutes of Health (R00 Award GM102288)

  • Nicholas M Levinson

National Institutes of Health (R21 Award CA217695)

  • Nicholas M Levinson

National Institutes of Health (NRSA Award F32GM120817)

  • Emily F Ruff

National Institutes of Health (P30-CA008748)

  • John D Chodera

National Institutes of Health (GM121505)

  • John D Chodera

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. William I Weis, Stanford University Medical Center, United States

Version history

  1. Received: October 13, 2017
  2. Accepted: February 19, 2018
  3. Accepted Manuscript published: February 21, 2018 (version 1)
  4. Version of Record published: March 13, 2018 (version 2)

Copyright

© 2018, Ruff et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,778
    views
  • 699
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emily F Ruff
  2. Joseph M Muretta
  3. Andrew R Thompson
  4. Eric W Lake
  5. Soreen Cyphers
  6. Steven K Albanese
  7. Sonya M Hanson
  8. Julie M Behr
  9. David D Thomas
  10. John D Chodera
  11. Nicholas M Levinson
(2018)
A dynamic mechanism for allosteric activation of Aurora kinase A by activation loop phosphorylation
eLife 7:e32766.
https://doi.org/10.7554/eLife.32766

Share this article

https://doi.org/10.7554/eLife.32766

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.

    1. Structural Biology and Molecular Biophysics
    Thuy TM Ngo, Bailey Liu ... Taekjip Ha
    Research Article

    The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.