A combinatorial transcription factor signature defines the HSN serotonergic neuron regulatory landscape

  1. Carla Lloret-Fernández
  2. Miren Maicas
  3. Carlos Mora-Martínez
  4. Alejandro Artacho
  5. Angela Jimeno-Martín
  6. Laura Chirivella
  7. Peter Weinberg
  8. Nuria Flames  Is a corresponding author
  1. Instituto de Biomedicina de Valencia, Spain
  2. Centro Superior de Investigación en Salud Pública, FISABIO, Spain
  3. Howard Hughes Medical Institute, Columbia University, United States

Abstract

Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis-regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in C. elegans. Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years.

Article and author information

Author details

  1. Carla Lloret-Fernández

    Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Miren Maicas

    Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Carlos Mora-Martínez

    Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Alejandro Artacho

    Departamento de Genómica y Salud, Centro Superior de Investigación en Salud Pública, FISABIO, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Angela Jimeno-Martín

    Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura Chirivella

    Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Peter Weinberg

    Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Nuria Flames

    Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    For correspondence
    nflamesb@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0961-0609

Funding

Ministerio de Economía y Competitividad (SAF2014-56877-R)

  • Carla Lloret-Fernández
  • Miren Maicas
  • Carlos Mora-Martínez
  • Angela Jimeno-Martín
  • Laura Chirivella
  • Nuria Flames

European Research Council (ERC Stg 2011-281920)

  • Carla Lloret-Fernández
  • Miren Maicas
  • Carlos Mora-Martínez
  • Angela Jimeno-Martín
  • Laura Chirivella
  • Nuria Flames

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed according to the animal care guidelines of the European Community Council (86 ⁄ 609 ⁄ EEC) and to Spanish regulations (RD1201 ⁄ 2005), following protocols approved by the ethics committees of the Consejo Superior Investigaciones Científicas (CSIC).

Copyright

© 2018, Lloret-Fernández et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,508
    views
  • 480
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carla Lloret-Fernández
  2. Miren Maicas
  3. Carlos Mora-Martínez
  4. Alejandro Artacho
  5. Angela Jimeno-Martín
  6. Laura Chirivella
  7. Peter Weinberg
  8. Nuria Flames
(2018)
A combinatorial transcription factor signature defines the HSN serotonergic neuron regulatory landscape
eLife 7:e32785.
https://doi.org/10.7554/eLife.32785

Share this article

https://doi.org/10.7554/eLife.32785

Further reading

    1. Developmental Biology
    Ming-Ming Chen, Yue Zhao ... Zheng-Xing Lian
    Research Article

    Mutations in the well-known Myostatin (MSTN) produce a ‘double-muscle’ phenotype, which makes it commercially invaluable for improving livestock meat production and providing high-quality protein for humans. However, mutations at different loci of the MSTN often produce a variety of different phenotypes. In the current study, we increased the delivery ratio of Cas9 mRNA to sgRNA from the traditional 1:2 to 1:10, which improves the efficiency of the homozygous mutation of biallelic gene. Here, a MSTNDel73C mutation with FGF5 knockout sheep, in which the MSTN and FGF5 dual-gene biallelic homozygous mutations were produced via the deletion of 3-base pairs of AGC in the third exon of MSTN, resulting in cysteine-depleted at amino acid position 73, and the FGF5 double allele mutation led to inactivation of FGF5 gene. The MSTNDel73C mutation with FGF5 knockout sheep highlights a dominant ‘double-muscle’ phenotype, which can be stably inherited. Both F0 and F1 generation mutants highlight the excellent trait of high-yield meat with a smaller cross-sectional area and higher number of muscle fibers per unit area. Mechanistically, the MSTNDel73C mutation with FGF5 knockout mediated the activation of FOSL1 via the MEK-ERK-FOSL1 axis. The activated FOSL1 promotes skeletal muscle satellite cell proliferation and inhibits myogenic differentiation by inhibiting the expression of MyoD1, and resulting in smaller myotubes. In addition, activated ERK1/2 may inhibit the secondary fusion of myotubes by Ca2+-dependent CaMKII activation pathway, leading to myoblasts fusion to form smaller myotubes.

    1. Computational and Systems Biology
    2. Developmental Biology
    Juan Manuel Gomez, Hendrik Nolte ... Maria Leptin
    Research Article Updated

    The initially homogeneous epithelium of the early Drosophila embryo differentiates into regional subpopulations with different behaviours and physical properties that are needed for morphogenesis. The factors at top of the genetic hierarchy that control these behaviours are known, but many of their targets are not. To understand how proteins work together to mediate differential cellular activities, we studied in an unbiased manner the proteomes and phosphoproteomes of the three main cell populations along the dorso-ventral axis during gastrulation using mutant embryos that represent the different populations. We detected 6111 protein groups and 6259 phosphosites of which 3398 and 3433 were differentially regulated, respectively. The changes in phosphosite abundance did not correlate with changes in host protein abundance, showing phosphorylation to be a regulatory step during gastrulation. Hierarchical clustering of protein groups and phosphosites identified clusters that contain known fate determinants such as Doc1, Sog, Snail, and Twist. The recovery of the appropriate known marker proteins in each of the different mutants we used validated the approach, but also revealed that two mutations that both interfere with the dorsal fate pathway, Toll10B and serpin27aex do this in very different manners. Diffused network analyses within each cluster point to microtubule components as one of the main groups of regulated proteins. Functional studies on the role of microtubules provide the proof of principle that microtubules have different functions in different domains along the DV axis of the embryo.