A combinatorial transcription factor signature defines the HSN serotonergic neuron regulatory landscape

  1. Carla Lloret-Fernández
  2. Miren Maicas
  3. Carlos Mora-Martínez
  4. Alejandro Artacho
  5. Angela Jimeno-Martín
  6. Laura Chirivella
  7. Peter Weinberg
  8. Nuria Flames  Is a corresponding author
  1. Instituto de Biomedicina de Valencia, Spain
  2. Centro Superior de Investigación en Salud Pública, FISABIO, Spain
  3. Howard Hughes Medical Institute, Columbia University, United States

Abstract

Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis-regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in C. elegans. Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years.

Article and author information

Author details

  1. Carla Lloret-Fernández

    Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Miren Maicas

    Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Carlos Mora-Martínez

    Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Alejandro Artacho

    Departamento de Genómica y Salud, Centro Superior de Investigación en Salud Pública, FISABIO, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Angela Jimeno-Martín

    Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura Chirivella

    Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Peter Weinberg

    Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Nuria Flames

    Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, Valencia, Spain
    For correspondence
    nflamesb@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0961-0609

Funding

Ministerio de Economía y Competitividad (SAF2014-56877-R)

  • Carla Lloret-Fernández
  • Miren Maicas
  • Carlos Mora-Martínez
  • Angela Jimeno-Martín
  • Laura Chirivella
  • Nuria Flames

European Research Council (ERC Stg 2011-281920)

  • Carla Lloret-Fernández
  • Miren Maicas
  • Carlos Mora-Martínez
  • Angela Jimeno-Martín
  • Laura Chirivella
  • Nuria Flames

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed according to the animal care guidelines of the European Community Council (86 ⁄ 609 ⁄ EEC) and to Spanish regulations (RD1201 ⁄ 2005), following protocols approved by the ethics committees of the Consejo Superior Investigaciones Científicas (CSIC).

Reviewing Editor

  1. Piali Sengupta, Brandeis University, United States

Publication history

  1. Received: October 20, 2017
  2. Accepted: March 16, 2018
  3. Accepted Manuscript published: March 19, 2018 (version 1)
  4. Accepted Manuscript updated: March 22, 2018 (version 2)
  5. Version of Record published: April 25, 2018 (version 3)

Copyright

© 2018, Lloret-Fernández et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,150
    Page views
  • 448
    Downloads
  • 32
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carla Lloret-Fernández
  2. Miren Maicas
  3. Carlos Mora-Martínez
  4. Alejandro Artacho
  5. Angela Jimeno-Martín
  6. Laura Chirivella
  7. Peter Weinberg
  8. Nuria Flames
(2018)
A combinatorial transcription factor signature defines the HSN serotonergic neuron regulatory landscape
eLife 7:e32785.
https://doi.org/10.7554/eLife.32785

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Brian Silver, Kevin Gerrish, Erik Tokar
    Research Article

    Cell-free DNA (cfDNA) present in the bloodstream or other bodily fluids holds potential as a non-invasive diagnostic for early disease detection. However, it remains unclear what cfDNA markers might be produced in response to specific tissue-level events. Organoid systems present a tractable and efficient method for screening cfDNA markers. However, research investigating the release of cfDNA from organoids is limited. Here, we present a scalable method for high-throughput screening of cfDNA from cardiac organoids. We demonstrate that cfDNA is recoverable from cardiac organoids, and that cfDNA release is highest early in differentiation. Intriguingly, we observed that the fraction of cell-free mitochondrial DNA appeared to decrease as the organoids developed, suggesting a possible signature of cardiac organoid maturation, or other cardiac growth-related tissue-level events. We also observe alterations in the prevalence of specific genomic regions in cardiac organoid-derived cfDNA at different timepoints during growth. In addition, we identify cfDNA markers that were increased upon addition of cardiotoxic drugs, prior to the onset of tissue demise. Together, these results indicate that cardiac organoids may be a useful system towards the identification of candidate predictive cfDNA markers of cardiac tissue development and demise.

    1. Developmental Biology
    2. Neuroscience
    Sweta Parab, Olivia A Card ... Ryota L Matsuoka
    Research Article Updated

    Fenestrated and blood-brain barrier (BBB)-forming endothelial cells constitute major brain capillaries, and this vascular heterogeneity is crucial for region-specific neural function and brain homeostasis. How these capillary types emerge in a brain region-specific manner and subsequently establish intra-brain vascular heterogeneity remains unclear. Here, we performed a comparative analysis of vascularization across the zebrafish choroid plexuses (CPs), circumventricular organs (CVOs), and retinal choroid, and show common angiogenic mechanisms critical for fenestrated brain capillary formation. We found that zebrafish deficient for Gpr124, Reck, or Wnt7aa exhibit severely impaired BBB angiogenesis without any apparent defect in fenestrated capillary formation in the CPs, CVOs, and retinal choroid. Conversely, genetic loss of various Vegf combinations caused significant disruptions in Wnt7/Gpr124/Reck signaling-independent vascularization of these organs. The phenotypic variation and specificity revealed heterogeneous endothelial requirements for Vegfs-dependent angiogenesis during CP and CVO vascularization, identifying unexpected interplay of Vegfc/d and Vegfa in this process. Mechanistically, expression analysis and paracrine activity-deficient vegfc mutant characterization suggest that endothelial cells and non-neuronal specialized cell types present in the CPs and CVOs are major sources of Vegfs responsible for regionally restricted angiogenic interplay. Thus, brain region-specific presentations and interplay of Vegfc/d and Vegfa control emergence of fenestrated capillaries, providing insight into the mechanisms driving intra-brain vascular heterogeneity and fenestrated vessel formation in other organs.