Single-cell transcriptional dynamics of flavivirus infection

  1. Fabio Zanini  Is a corresponding author
  2. Szu-Yuan Pu
  3. Elena Bekerman
  4. Shirit Einav
  5. Stephen R Quake  Is a corresponding author
  1. Stanford University, United States

Abstract

Dengue and Zika viral infections affect millions of people annually and can be complicated by hemorrhage or neurological manifestations, respectively. However, a thorough understanding of the host response to these viruses is lacking, partly because conventional approaches ignore heterogeneity in virus abundance across cells. We present viscRNA-Seq (virus-inclusive single cell RNA-Seq), an approach to probe the host transcriptome together with intracellular viral RNA at the single cell level. We applied viscRNA-Seq to monitor dengue and Zika virus infection in cultured cells and discovered extreme heterogeneity in virus abundance. We exploited this variation to identify host factors that show complex dynamics and a high degree of specificity for either virus, including proteins involved in the endoplasmic reticulum translocon, signal peptide processing, and membrane trafficking. We validated the viscRNA-Seq hits and discovered novel proviral and antiviral factors. viscRNA-Seq is a powerful approach to assess the genome-wide virus-host dynamics at single cell level.

Article and author information

Author details

  1. Fabio Zanini

    Department of Bioengineering, Stanford University, Stanford, United States
    For correspondence
    fabio.zanini@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7097-8539
  2. Szu-Yuan Pu

    Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elena Bekerman

    Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shirit Einav

    Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephen R Quake

    Department of Bioengineering, Stanford University, Stanford, United States
    For correspondence
    quake@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Allergy and Infectious Diseases (1U19 AI10966201)

  • Shirit Einav

Stanford Bio-X

  • Shirit Einav

Stanford Institute for Immunity, Transplantation, and Infection

  • Shirit Einav

European Molecular Biology Organization (ALTF 269-2016)

  • Fabio Zanini

Child Health Research Institute

  • Szu-Yuan Pu

Lucile Packard Foundation for Children's Health

  • Szu-Yuan Pu

Stanford Clinical and Translational Science Award (UL1​ ​ TR000093)

  • Szu-Yuan Pu

National Institute of Allergy and Infectious Diseases (5T32AI007502)

  • Elena Bekerman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arup K Chakraborty, Massachusetts Institute of Technology, United States

Publication history

  1. Received: October 19, 2017
  2. Accepted: February 8, 2018
  3. Accepted Manuscript published: February 16, 2018 (version 1)
  4. Version of Record published: February 26, 2018 (version 2)

Copyright

© 2018, Zanini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,066
    Page views
  • 1,478
    Downloads
  • 80
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fabio Zanini
  2. Szu-Yuan Pu
  3. Elena Bekerman
  4. Shirit Einav
  5. Stephen R Quake
(2018)
Single-cell transcriptional dynamics of flavivirus infection
eLife 7:e32942.
https://doi.org/10.7554/eLife.32942
  1. Further reading

Further reading

    1. Cancer Biology
    2. Microbiology and Infectious Disease
    Changkun Hu, Taylor Bugbee ... Nicholas Wallace
    Research Article Updated

    Double strand breaks (DSBs) are one of the most lethal DNA lesions in cells. The E6 protein of beta-human papillomavirus (HPV8 E6) impairs two critical DSB repair pathways: homologous recombination (HR) and non-homologous end joining (NHEJ). However, HPV8 E6 only delays DSB repair. How DSBs are repaired in cells with HPV8 E6 remains to be studied. We hypothesize that HPV8 E6 promotes a less commonly used DSB repair pathway, alternative end joining (Alt-EJ). Using CAS9-based Alt-EJ reporters, we show that HPV8 E6 promotes Alt-EJ. Further, using small molecule inhibitors, CRISPR/CAS9 gene knockout, and HPV8 E6 mutant, we find that HPV8 E6 promotes Alt-EJ by binding p300, an acetyltransferase that facilitates DSB repair by HR and NHEJ. At least some of this repair occurs through a subset of Alt-EJ known as polymerase theta dependent end joining. Finally, whole genome sequencing analysis showed HPV8 E6 caused an increased frequency of deletions bearing the microhomology signatures of Alt-EJ. This study fills the knowledge gap of how DSB is repaired in cells with HPV8 E6 and the mutagenic consequences of HPV8 E6 mediated p300 destabilization. Broadly, this study supports the hypothesis that beta-HPV promotes cancer formation by increasing genomic instability.

    1. Microbiology and Infectious Disease
    Fabrice Jean-Pierre, Thomas H Hampton ... George A O'Toole
    Research Article Updated

    Interspecies interactions can drive the emergence of unexpected microbial phenotypes that are not observed when studying monocultures. The cystic fibrosis (CF) lung consists of a complex environment where microbes, living as polymicrobial biofilm-like communities, are associated with negative clinical outcomes for persons with CF (pwCF). However, the current lack of in vitro models integrating the microbial diversity observed in the CF airway hampers our understanding of why polymicrobial communities are recalcitrant to therapy in this disease. Here, integrating computational approaches informed by clinical data, we built a mixed community of clinical relevance to the CF lung composed of Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sanguinis, and Prevotella melaninogenica. We developed and validated this model biofilm community with multiple isolates of these four genera. When challenged with tobramycin, a front-line antimicrobial used to treat pwCF, the microorganisms in the polymicrobial community show altered sensitivity to this antibiotic compared to monospecies biofilms. We observed that wild-type P. aeruginosa is sensitized to tobramycin in a mixed community versus monoculture, and this observation holds across a range of community relative abundances. We also report that LasR loss-of-function, a variant frequently detected in the CF airway, drives tolerance of P. aeruginosa to tobramycin specifically in the mixed community. Our data suggest that the molecular basis of this community-specific recalcitrance to tobramycin for the P. aeruginosa lasR mutant is increased production of phenazines. Our work supports the importance of studying a clinically relevant model of polymicrobial biofilms to understand community-specific traits relevant to infections.