Abstract

Dengue and Zika viral infections affect millions of people annually and can be complicated by hemorrhage or neurological manifestations, respectively. However, a thorough understanding of the host response to these viruses is lacking, partly because conventional approaches ignore heterogeneity in virus abundance across cells. We present viscRNA-Seq (virus-inclusive single cell RNA-Seq), an approach to probe the host transcriptome together with intracellular viral RNA at the single cell level. We applied viscRNA-Seq to monitor dengue and Zika virus infection in cultured cells and discovered extreme heterogeneity in virus abundance. We exploited this variation to identify host factors that show complex dynamics and a high degree of specificity for either virus, including proteins involved in the endoplasmic reticulum translocon, signal peptide processing, and membrane trafficking. We validated the viscRNA-Seq hits and discovered novel proviral and antiviral factors. viscRNA-Seq is a powerful approach to assess the genome-wide virus-host dynamics at single cell level.

Article and author information

Author details

  1. Fabio Zanini

    Department of Bioengineering, Stanford University, Stanford, United States
    For correspondence
    fabio.zanini@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7097-8539
  2. Szu-Yuan Pu

    Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elena Bekerman

    Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shirit Einav

    Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephen R Quake

    Department of Bioengineering, Stanford University, Stanford, United States
    For correspondence
    quake@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Allergy and Infectious Diseases (1U19 AI10966201)

  • Shirit Einav

Stanford Bio-X

  • Shirit Einav

Stanford Institute for Immunity, Transplantation, and Infection

  • Shirit Einav

European Molecular Biology Organization (ALTF 269-2016)

  • Fabio Zanini

Child Health Research Institute

  • Szu-Yuan Pu

Lucile Packard Foundation for Children's Health

  • Szu-Yuan Pu

Stanford Clinical and Translational Science Award (UL1​ ​ TR000093)

  • Szu-Yuan Pu

National Institute of Allergy and Infectious Diseases (5T32AI007502)

  • Elena Bekerman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arup K Chakraborty, Massachusetts Institute of Technology, United States

Version history

  1. Received: October 19, 2017
  2. Accepted: February 8, 2018
  3. Accepted Manuscript published: February 16, 2018 (version 1)
  4. Version of Record published: February 26, 2018 (version 2)

Copyright

© 2018, Zanini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,543
    Page views
  • 1,541
    Downloads
  • 84
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fabio Zanini
  2. Szu-Yuan Pu
  3. Elena Bekerman
  4. Shirit Einav
  5. Stephen R Quake
(2018)
Single-cell transcriptional dynamics of flavivirus infection
eLife 7:e32942.
https://doi.org/10.7554/eLife.32942

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Dasvit Shetty, Linda J Kenney
    Research Article Updated

    The transcriptional regulator SsrB acts as a switch between virulent and biofilm lifestyles of non-typhoidal Salmonella enterica serovar Typhimurium. During infection, phosphorylated SsrB activates genes on Salmonella Pathogenicity Island-2 (SPI-2) essential for survival and replication within the macrophage. Low pH inside the vacuole is a key inducer of expression and SsrB activation. Previous studies demonstrated an increase in SsrB protein levels and DNA-binding affinity at low pH; the molecular basis was unknown (Liew et al., 2019). This study elucidates its underlying mechanism and in vivo significance. Employing single-molecule and transcriptional assays, we report that the SsrB DNA-binding domain alone (SsrBc) is insufficient to induce acid pH-sensitivity. Instead, His12, a conserved residue in the receiver domain confers pH sensitivity to SsrB allosterically. Acid-dependent DNA binding was highly cooperative, suggesting a new configuration of SsrB oligomers at SPI-2-dependent promoters. His12 also plays a role in SsrB phosphorylation; substituting His12 reduced phosphorylation at neutral pH and abolished pH-dependent differences. Failure to flip the switch in SsrB renders Salmonella avirulent and represents a potential means of controlling virulence.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Rebecca EK Mandt, Madeline R Luth ... Amanda K Lukens
    Research Article

    Drug resistance remains a major obstacle to malaria control and eradication efforts, necessitating the development of novel therapeutic strategies to treat this disease. Drug combinations based on collateral sensitivity, wherein resistance to one drug causes increased sensitivity to the partner drug, have been proposed as an evolutionary strategy to suppress the emergence of resistance in pathogen populations. In this study, we explore collateral sensitivity between compounds targeting the Plasmodium dihydroorotate dehydrogenase (DHODH). We profiled the cross-resistance and collateral sensitivity phenotypes of several DHODH mutant lines to a diverse panel of DHODH inhibitors. We focus on one compound, TCMDC-125334, which was active against all mutant lines tested, including the DHODH C276Y line, which arose in selections with the clinical candidate DSM265. In six selections with TCMDC-125334, the most common mechanism of resistance to this compound was copy number variation of the dhodh locus, although we did identify one mutation, DHODH I263S, which conferred resistance to TCMDC-125334 but not DSM265. We found that selection of the DHODH C276Y mutant with TCMDC-125334 yielded additional genetic changes in the dhodh locus. These double mutant parasites exhibited decreased sensitivity to TCMDC-125334 and were highly resistant to DSM265. Finally, we tested whether collateral sensitivity could be exploited to suppress the emergence of resistance in the context of combination treatment by exposing wildtype parasites to both DSM265 and TCMDC-125334 simultaneously. This selected for parasites with a DHODH V532A mutation which were cross-resistant to both compounds and were as fit as the wildtype parent in vitro. The emergence of these cross-resistant, evolutionarily fit parasites highlights the mutational flexibility of the DHODH enzyme.