Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish

  1. Sharan Janjuha
  2. Sumeet Pal Singh
  3. Anastasia Tsakmaki
  4. Neda Mousavy-Gharavy
  5. Priyanka Murawala
  6. Judith Konantz
  7. Sarah Birke
  8. David J Hodson
  9. Guy Rutter
  10. Gavin Bewick
  11. Nikolay N Ninov  Is a corresponding author
  1. Technische Universität Dresden, Germany
  2. King's College London, United Kingdom
  3. Imperial College London, United Kingdom
  4. University of Birmingham, United Kingdom

Abstract

The pancreatic islet, a cellular community harboring the insulin-producing beta-cells, is known to undergo age-related alterations. However, only a handful of signals associated with aging have been identified. By comparing beta-cells from younger and older zebrafish, here we show that the aging islets exhibit signs of chronic inflammation. These include recruitment of tnfα-expressing macrophages and the activation of NF-kB signaling in beta-cells. Using a transgenic reporter, we show that NF-kB activity is undetectable in juvenile beta-cells, whereas cells from older fish exhibit heterogeneous NF-kB activity. We link this heterogeneity to differences in gene expression and proliferation. Beta-cells with high NF-kB signaling proliferate significantly less compared to their neighbors with low activity. The NF-kB signalinghi cells also exhibit premature upregulation of socs2, an age-related gene that inhibits beta-cell proliferation. Together, our results show that NF-kB activity marks the asynchronous decline in beta-cell proliferation with advancing age.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Sharan Janjuha

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sumeet Pal Singh

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5154-3318
  3. Anastasia Tsakmaki

    School of Life Course Sciences, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Neda Mousavy-Gharavy

    Department of Medicine, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Priyanka Murawala

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Judith Konantz

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Sarah Birke

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. David J Hodson

    Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Edgbaston, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8641-8568
  9. Guy Rutter

    Department of Medicine, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Gavin Bewick

    School of Life Course Sciences, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4335-8403
  11. Nikolay N Ninov

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    For correspondence
    nikolay.ninov@tu-dresden.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3286-6100

Funding

DFG-Center for Regenerative Therapies Dresden

  • Nikolay N Ninov

German Center for Diabetes Research

  • Nikolay N Ninov

Deutsche Forschungsgemeinschaft

  • Nikolay N Ninov

European Foundation for the Study of Diabetes

  • Nikolay N Ninov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were conducted in accordance with the Animal Welfare Act and with permissionof the Landesdirektion Sachsen, Germany (AZ 24-9168, TV38/2015, A12/2016, A5/2017).

Copyright

© 2018, Janjuha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,970
    views
  • 644
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sharan Janjuha
  2. Sumeet Pal Singh
  3. Anastasia Tsakmaki
  4. Neda Mousavy-Gharavy
  5. Priyanka Murawala
  6. Judith Konantz
  7. Sarah Birke
  8. David J Hodson
  9. Guy Rutter
  10. Gavin Bewick
  11. Nikolay N Ninov
(2018)
Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish
eLife 7:e32965.
https://doi.org/10.7554/eLife.32965

Share this article

https://doi.org/10.7554/eLife.32965

Further reading

    1. Cell Biology
    2. Neuroscience
    Jun Sun, Francisca Rojo-Cortes ... Alicia Hidalgo
    Research Article

    Experience shapes the brain as neural circuits can be modified by neural stimulation or the lack of it. The molecular mechanisms underlying structural circuit plasticity and how plasticity modifies behaviour are poorly understood. Subjective experience requires dopamine, a neuromodulator that assigns a value to stimuli, and it also controls behaviour, including locomotion, learning, and memory. In Drosophila, Toll receptors are ideally placed to translate experience into structural brain change. Toll-6 is expressed in dopaminergic neurons (DANs), raising the intriguing possibility that Toll-6 could regulate structural plasticity in dopaminergic circuits. Drosophila neurotrophin-2 (DNT-2) is the ligand for Toll-6 and Kek-6, but whether it is required for circuit structural plasticity was unknown. Here, we show that DNT-2-expressing neurons connect with DANs, and they modulate each other. Loss of function for DNT-2 or its receptors Toll-6 and kinase-less Trk-like kek-6 caused DAN and synapse loss, impaired dendrite growth and connectivity, decreased synaptic sites, and caused locomotion deficits. In contrast, over-expressed DNT-2 increased DAN cell number, dendrite complexity, and promoted synaptogenesis. Neuronal activity modified DNT-2, increased synaptogenesis in DNT-2-positive neurons and DANs, and over-expression of DNT-2 did too. Altering the levels of DNT-2 or Toll-6 also modified dopamine-dependent behaviours, including locomotion and long-term memory. To conclude, a feedback loop involving dopamine and DNT-2 highlighted the circuits engaged, and DNT-2 with Toll-6 and Kek-6 induced structural plasticity in this circuit modifying brain function and behaviour.

    1. Cell Biology
    2. Genetics and Genomics
    Showkat Ahmad Dar, Sulochan Malla ... Manolis Maragkakis
    Research Article

    Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5ʹ end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5ʹ end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.