1. Cell Biology
Download icon

Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish

  1. Sharan Janjuha
  2. Sumeet Pal Singh
  3. Anastasia Tsakmaki
  4. Neda Mousavy-Gharavy
  5. Priyanka Murawala
  6. Judith Konantz
  7. Sarah Birke
  8. David J Hodson
  9. Guy Rutter
  10. Gavin Bewick
  11. Nikolay N Ninov  Is a corresponding author
  1. Technische Universität Dresden, Germany
  2. King's College London, United Kingdom
  3. Imperial College London, United Kingdom
  4. University of Birmingham, United Kingdom
Research Article
  • Cited 14
  • Views 3,045
  • Annotations
Cite this article as: eLife 2018;7:e32965 doi: 10.7554/eLife.32965

Abstract

The pancreatic islet, a cellular community harboring the insulin-producing beta-cells, is known to undergo age-related alterations. However, only a handful of signals associated with aging have been identified. By comparing beta-cells from younger and older zebrafish, here we show that the aging islets exhibit signs of chronic inflammation. These include recruitment of tnfα-expressing macrophages and the activation of NF-kB signaling in beta-cells. Using a transgenic reporter, we show that NF-kB activity is undetectable in juvenile beta-cells, whereas cells from older fish exhibit heterogeneous NF-kB activity. We link this heterogeneity to differences in gene expression and proliferation. Beta-cells with high NF-kB signaling proliferate significantly less compared to their neighbors with low activity. The NF-kB signalinghi cells also exhibit premature upregulation of socs2, an age-related gene that inhibits beta-cell proliferation. Together, our results show that NF-kB activity marks the asynchronous decline in beta-cell proliferation with advancing age.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Sharan Janjuha

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sumeet Pal Singh

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5154-3318
  3. Anastasia Tsakmaki

    School of Life Course Sciences, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Neda Mousavy-Gharavy

    Department of Medicine, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Priyanka Murawala

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Judith Konantz

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Sarah Birke

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. David J Hodson

    Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Edgbaston, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8641-8568
  9. Guy Rutter

    Department of Medicine, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Gavin Bewick

    School of Life Course Sciences, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4335-8403
  11. Nikolay N Ninov

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    For correspondence
    nikolay.ninov@tu-dresden.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3286-6100

Funding

DFG-Center for Regenerative Therapies Dresden

  • Nikolay N Ninov

German Center for Diabetes Research

  • Nikolay N Ninov

Deutsche Forschungsgemeinschaft

  • Nikolay N Ninov

European Foundation for the Study of Diabetes

  • Nikolay N Ninov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were conducted in accordance with the Animal Welfare Act and with permissionof the Landesdirektion Sachsen, Germany (AZ 24-9168, TV38/2015, A12/2016, A5/2017).

Reviewing Editor

  1. Marianne Bronner, California Institute of Technology, United States

Publication history

  1. Received: October 23, 2017
  2. Accepted: April 5, 2018
  3. Accepted Manuscript published: April 6, 2018 (version 1)
  4. Accepted Manuscript updated: April 10, 2018 (version 2)
  5. Version of Record published: May 9, 2018 (version 3)

Copyright

© 2018, Janjuha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,045
    Page views
  • 576
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Zdravka Daneva et al.
    Research Article Updated

    Pannexin 1 (Panx1), an ATP-efflux pathway, has been linked with inflammation in pulmonary capillaries. However, the physiological roles of endothelial Panx1 in the pulmonary vasculature are unknown. Endothelial transient receptor potential vanilloid 4 (TRPV4) channels lower pulmonary artery (PA) contractility and exogenous ATP activates endothelial TRPV4 channels. We hypothesized that endothelial Panx1–ATP–TRPV4 channel signaling promotes vasodilation and lowers pulmonary arterial pressure (PAP). Endothelial, but not smooth muscle, knockout of Panx1 increased PA contractility and raised PAP in mice. Flow/shear stress increased ATP efflux through endothelial Panx1 in PAs. Panx1-effluxed extracellular ATP signaled through purinergic P2Y2 receptor (P2Y2R) to activate protein kinase Cα (PKCα), which in turn activated endothelial TRPV4 channels. Finally, caveolin-1 provided a signaling scaffold for endothelial Panx1, P2Y2R, PKCα, and TRPV4 channels in PAs, promoting their spatial proximity and enabling signaling interactions. These results indicate that endothelial Panx1–P2Y2R–TRPV4 channel signaling, facilitated by caveolin-1, reduces PA contractility and lowers PAP in mice.

    1. Cell Biology
    Adria Razzauti, Patrick FM Laurent
    Research Article

    Cilia are sensory organelles protruding from cell surfaces. Release of Extracellular Vesicles (EVs) from cilia was previously observed in mammals, Chlamydomonas, and in male C. elegans. Using the EV marker TSP-6 (an ortholog of mammalian CD9) and other ciliary receptors, we show that EVs are formed from ciliated sensory neurons in C. elegans hermaphrodites. Release of EVs is observed from two ciliary locations: the cilia tip and/or Periciliary Membrane Compartment (PCMC). Outward budding of EVs from the cilia tip leads to their release into the environment. EVs budding from the PCMC are concomitantly phagocytosed by the associated glial cells. To maintain cilia composition, a tight regulation of cargo import and removal is achieved by the action of Intra-Flagellar Transport (IFT). Unbalanced IFT due to cargo overexpression or mutations in the IFT machinery leads to local accumulation of ciliary proteins. Disposal of excess ciliary proteins via EVs reduces their local accumulation and exports them to the environment and/or to the glia associated to these ciliated neurons. We suggest that EV budding from cilia subcompartments acts as a safeguard mechanism to remove deleterious excess of ciliary material.