Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish

  1. Sharan Janjuha
  2. Sumeet Pal Singh
  3. Anastasia Tsakmaki
  4. Neda Mousavy-Gharavy
  5. Priyanka Murawala
  6. Judith Konantz
  7. Sarah Birke
  8. David J Hodson
  9. Guy Rutter
  10. Gavin Bewick
  11. Nikolay N Ninov  Is a corresponding author
  1. Technische Universität Dresden, Germany
  2. King's College London, United Kingdom
  3. Imperial College London, United Kingdom
  4. University of Birmingham, United Kingdom

Abstract

The pancreatic islet, a cellular community harboring the insulin-producing beta-cells, is known to undergo age-related alterations. However, only a handful of signals associated with aging have been identified. By comparing beta-cells from younger and older zebrafish, here we show that the aging islets exhibit signs of chronic inflammation. These include recruitment of tnfα-expressing macrophages and the activation of NF-kB signaling in beta-cells. Using a transgenic reporter, we show that NF-kB activity is undetectable in juvenile beta-cells, whereas cells from older fish exhibit heterogeneous NF-kB activity. We link this heterogeneity to differences in gene expression and proliferation. Beta-cells with high NF-kB signaling proliferate significantly less compared to their neighbors with low activity. The NF-kB signalinghi cells also exhibit premature upregulation of socs2, an age-related gene that inhibits beta-cell proliferation. Together, our results show that NF-kB activity marks the asynchronous decline in beta-cell proliferation with advancing age.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Sharan Janjuha

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sumeet Pal Singh

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5154-3318
  3. Anastasia Tsakmaki

    School of Life Course Sciences, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Neda Mousavy-Gharavy

    Department of Medicine, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Priyanka Murawala

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Judith Konantz

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Sarah Birke

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. David J Hodson

    Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Edgbaston, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8641-8568
  9. Guy Rutter

    Department of Medicine, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Gavin Bewick

    School of Life Course Sciences, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4335-8403
  11. Nikolay N Ninov

    DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
    For correspondence
    nikolay.ninov@tu-dresden.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3286-6100

Funding

DFG-Center for Regenerative Therapies Dresden

  • Nikolay N Ninov

German Center for Diabetes Research

  • Nikolay N Ninov

Deutsche Forschungsgemeinschaft

  • Nikolay N Ninov

European Foundation for the Study of Diabetes

  • Nikolay N Ninov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were conducted in accordance with the Animal Welfare Act and with permissionof the Landesdirektion Sachsen, Germany (AZ 24-9168, TV38/2015, A12/2016, A5/2017).

Copyright

© 2018, Janjuha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,934
    views
  • 641
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sharan Janjuha
  2. Sumeet Pal Singh
  3. Anastasia Tsakmaki
  4. Neda Mousavy-Gharavy
  5. Priyanka Murawala
  6. Judith Konantz
  7. Sarah Birke
  8. David J Hodson
  9. Guy Rutter
  10. Gavin Bewick
  11. Nikolay N Ninov
(2018)
Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish
eLife 7:e32965.
https://doi.org/10.7554/eLife.32965

Share this article

https://doi.org/10.7554/eLife.32965

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.

    1. Cell Biology
    Parijat Biswas, Priyanka Roy ... Deepak Kumar Sinha
    Research Article

    The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favouring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with Nuclear Factor Kappa Beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that Tumour Necrosis Factor Receptor 1 (TNFR1) initiates the hypertonicity induced NFkB signalling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders Receptor Interacting Protein Kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signalling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signalling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.