Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish

  1. Sharan Janjuha
  2. Sumeet Pal Singh
  3. Anastasia Tsakmaki
  4. S Neda Mousavy Gharavy
  5. Priyanka Murawala
  6. Judith Konantz
  7. Sarah Birke
  8. David J Hodson
  9. Guy A Rutter
  10. Gavin A Bewick
  11. Nikolay Ninov  Is a corresponding author
  1. Technische Universität Dresden, Germany
  2. King's College London, United Kingdom
  3. Imperial College London, United Kingdom
  4. University of Birmingham, United Kingdom

Abstract

The pancreatic islet, a cellular community harboring the insulin-producing beta-cells, is known to undergo age-related alterations. However, only a handful of signals associated with aging have been identified. By comparing beta-cells from younger and older zebrafish, here we show that the aging islets exhibit signs of chronic inflammation. These include recruitment of tnfα-expressing macrophages and the activation of NF-kB signaling in beta-cells. Using a transgenic reporter, we show that NF-kB activity is undetectable in juvenile beta-cells, whereas cells from older fish exhibit heterogeneous NF-kB activity. We link this heterogeneity to differences in gene expression and proliferation. Beta-cells with high NF-kB signaling proliferate significantly less compared to their neighbors with low activity. The NF-kB signalinghi cells also exhibit premature upregulation of socs2, an age-related gene that inhibits beta-cell proliferation. Together, our results show that NF-kB activity marks the asynchronous decline in beta-cell proliferation with advancing age.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Sharan Janjuha

    Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sumeet Pal Singh

    Centre for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5154-3318
  3. Anastasia Tsakmaki

    Diabetes Research Group, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. S Neda Mousavy Gharavy

    Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism and Consortium for Islet Cell Biology and Diabetes, Department of Medicine, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Priyanka Murawala

    Centre for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Judith Konantz

    Centre for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Sarah Birke

    Centre for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. David J Hodson

    Centre for Endocrinology, Diabetes, and Metabolism and Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8641-8568
  9. Guy A Rutter

    Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism and Consortium for Islet Cell Biology and Diabetes, Department of Medicine, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Gavin A Bewick

    Diabetes Research Group, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4335-8403
  11. Nikolay Ninov

    Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
    For correspondence
    nikolay.ninov@tu-dresden.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3286-6100

Funding

DFG-Center for Regenerative Therapies Dresden

  • Nikolay Ninov

German Center for Diabetes Research

  • Nikolay Ninov

Deutsche Forschungsgemeinschaft

  • Nikolay Ninov

European Foundation for the Study of Diabetes

  • Nikolay Ninov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were conducted in accordance with the Animal Welfare Act and with permissionof the Landesdirektion Sachsen, Germany (AZ 24-9168, TV38/2015, A12/2016, A5/2017).

Copyright

© 2018, Janjuha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,984
    views
  • 644
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sharan Janjuha
  2. Sumeet Pal Singh
  3. Anastasia Tsakmaki
  4. S Neda Mousavy Gharavy
  5. Priyanka Murawala
  6. Judith Konantz
  7. Sarah Birke
  8. David J Hodson
  9. Guy A Rutter
  10. Gavin A Bewick
  11. Nikolay Ninov
(2018)
Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish
eLife 7:e32965.
https://doi.org/10.7554/eLife.32965

Share this article

https://doi.org/10.7554/eLife.32965

Further reading

    1. Cell Biology
    Ling Cheng, Ian Meliala ... Mikael Björklund
    Research Article

    Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR. Depletion of PEBP1 impaired mitochondrial ISR activation by reducing eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and subsequent ISR gene expression, which was independent of PEBP1’s role in inhibiting the RAF/MEK/ERK pathway. Consistently, overexpression of PEBP1 potentiated ISR activation by heme-regulated inhibitor (HRI) kinase, the principal eIF2α kinase in the mitochondrial ISR pathway. Real-time interaction analysis using luminescence complementation in live cells revealed an interaction between PEBP1 and eIF2α, which was disrupted by eIF2α S51 phosphorylation. These findings suggest a role for PEBP1 in amplifying mitochondrial stress signals, thereby facilitating an effective cellular response to mitochondrial dysfunction. Therefore, PEBP1 may be a potential therapeutic target for diseases associated with mitochondrial dysfunction.

    1. Cell Biology
    Nancy Nader, Lama Assaf ... Khaled Machaca
    Research Article

    The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptor agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors.