Abstract

Effective antibiotic use that minimizes treatment failures remains a challenge. A better understanding of how bacterial populations respond to antibiotics is necessary. Previous studies of large bacterial populations established the current deterministic framework of pharmacodynamics. Here, characterizing the dynamics of population extinction, we demonstrated the stochastic nature of eradicating bacteria with antibiotics. Antibiotics known to kill bacteria (bactericidal) induced population fluctuations. Thus, at high antibiotic concentrations, the dynamics of bacterial clearance were heterogeneous. At low concentrations, clearance still occurred with a non-zero probability. These striking outcomes of population fluctuations were well captured by our probabilistic model. Our model further suggested a strategy to facilitate eradication by increasing extinction probability. We experimentally tested this prediction for antibiotic-susceptible and clinically-isolated resistant bacteria. This new knowledge exposes fundamental limits in our ability to predict bacterial eradication. Additionally, it demonstrates the potential of using antibiotic concentrations that were previously deemed inefficacious to eradicate bacteria.

Article and author information

Author details

  1. Jessica Coates

    Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Bo Ryoung Park

    Department of Physics, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dai Le

    Department of Physics, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Emrah Şimşek

    Department of Physics, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Waqas Chaudhry

    Department of Physics, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Minsu Kim

    Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, United States
    For correspondence
    minsu.kim@emory.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1594-4971

Funding

Research Corporation for Science Advancement (24097)

  • Jessica Coates
  • Bo Ryoung Park
  • Dai Le
  • Emrah Şimşek
  • Minsu Kim

Human Frontier Science Program (RGY0072/2015)

  • Jessica Coates
  • Bo Ryoung Park
  • Dai Le
  • Emrah Şimşek
  • Minsu Kim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Aleksandra M Walczak, Ecole Normale Superieure, France

Version history

  1. Received: October 20, 2017
  2. Accepted: February 15, 2018
  3. Accepted Manuscript published: March 6, 2018 (version 1)
  4. Version of Record published: March 12, 2018 (version 2)
  5. Version of Record updated: March 15, 2018 (version 3)

Copyright

© 2018, Coates et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,873
    views
  • 755
    downloads
  • 80
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jessica Coates
  2. Bo Ryoung Park
  3. Dai Le
  4. Emrah Şimşek
  5. Waqas Chaudhry
  6. Minsu Kim
(2018)
Antibiotic-induced population fluctuations and stochastic clearance of bacteria
eLife 7:e32976.
https://doi.org/10.7554/eLife.32976

Share this article

https://doi.org/10.7554/eLife.32976

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.