Presenilin mutations deregulate mitochondrial Ca2+ homeostasis and metabolic activity causing neurodegeneration in Caenorhabditis elegans

  1. Shaarika Sarasija
  2. Jocelyn T Laboy
  3. Zahra Ashkavand
  4. Jennifer Bonner
  5. Yi Tang
  6. Kenneth R Norman  Is a corresponding author
  1. Albany Medical College, United States
  2. Skidmore College, United States

Abstract

Mitochondrial dysfunction and subsequent metabolic deregulation is observed in neurodegenerative diseases and aging. Mutations in the presenilin (PSEN) encoding genes (PSEN1 and PSEN2) cause most cases of familial Alzheimer's disease (AD); however, the underlying mechanism of pathogenesis remains unclear. Here, we show that mutations in the C. elegans gene encoding a PSEN homolog, sel-12 result in mitochondrial metabolic defects that promote neurodegeneration as a result of oxidative stress. In sel-12 mutants, elevated endoplasmic reticulum (ER)-mitochondrial Ca2+ signaling leads to an increase in mitochondrial Ca2+ content which stimulates mitochondrial respiration resulting in an increase in mitochondrial superoxide production. By reducing ER Ca2+ release, mitochondrial Ca2+ uptake or mitochondrial superoxides in sel-12 mutants, we demonstrate rescue of the mitochondrial metabolic defects and prevent neurodegeneration. These data suggest that mutations in PSEN alter mitochondrial metabolic function via ER to mitochondrial Ca2+ signaling and provide insight for alternative targets for treating neurodegenerative diseases.

Data availability

Source data files have be proved for all figures.

Article and author information

Author details

  1. Shaarika Sarasija

    Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3610-2178
  2. Jocelyn T Laboy

    Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zahra Ashkavand

    Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jennifer Bonner

    Department of Biology, Skidmore College, Saratoga Springs, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yi Tang

    Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kenneth R Norman

    Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
    For correspondence
    normank@mail.amc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0773-9073

Funding

National Institute of General Medical Sciences (GM088213)

  • Yi Tang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Sarasija et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,613
    views
  • 623
    downloads
  • 61
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shaarika Sarasija
  2. Jocelyn T Laboy
  3. Zahra Ashkavand
  4. Jennifer Bonner
  5. Yi Tang
  6. Kenneth R Norman
(2018)
Presenilin mutations deregulate mitochondrial Ca2+ homeostasis and metabolic activity causing neurodegeneration in Caenorhabditis elegans
eLife 7:e33052.
https://doi.org/10.7554/eLife.33052

Share this article

https://doi.org/10.7554/eLife.33052

Further reading

    1. Cell Biology
    2. Developmental Biology
    Yan Zhang, Hua Zhang
    Insight

    Long thought to have little relevance to ovarian physiology, the rete ovarii may have a role in follicular dynamics and reproductive health.

    1. Cell Biology
    2. Developmental Biology
    Dilara N Anbarci, Jennifer McKey ... Blanche Capel
    Research Article

    The rete ovarii (RO) is an appendage of the ovary that has been given little attention. Although the RO appears in drawings of the ovary in early versions of Gray’s Anatomy, it disappeared from recent textbooks, and is often dismissed as a functionless vestige in the adult ovary. Using PAX8 immunostaining and confocal microscopy, we characterized the fetal development of the RO in the context of the mouse ovary. The RO consists of three distinct regions that persist in adult life, the intraovarian rete (IOR), the extraovarian rete (EOR), and the connecting rete (CR). While the cells of the IOR appear to form solid cords within the ovary, the EOR rapidly develops into a convoluted tubular epithelium ending in a distal dilated tip. Cells of the EOR are ciliated and exhibit cellular trafficking capabilities. The CR, connecting the EOR to the IOR, gradually acquires tubular epithelial characteristics by birth. Using microinjections into the distal dilated tip of the EOR, we found that luminal contents flow toward the ovary. Mass spectrometry revealed that the EOR lumen contains secreted proteins potentially important for ovarian function. We show that the cells of the EOR are closely associated with vasculature and macrophages, and are contacted by neuronal projections, consistent with a role as a sensory appendage of the ovary. The direct proximity of the RO to the ovary and its integration with the extraovarian landscape suggest that it plays an important role in ovary development and homeostasis.