Presenilin mutations deregulate mitochondrial Ca2+ homeostasis and metabolic activity causing neurodegeneration in Caenorhabditis elegans

  1. Shaarika Sarasija
  2. Jocelyn T Laboy
  3. Zahra Ashkavand
  4. Jennifer Bonner
  5. Yi Tang
  6. Kenneth R Norman  Is a corresponding author
  1. Albany Medical College, United States
  2. Skidmore College, United States

Abstract

Mitochondrial dysfunction and subsequent metabolic deregulation is observed in neurodegenerative diseases and aging. Mutations in the presenilin (PSEN) encoding genes (PSEN1 and PSEN2) cause most cases of familial Alzheimer's disease (AD); however, the underlying mechanism of pathogenesis remains unclear. Here, we show that mutations in the C. elegans gene encoding a PSEN homolog, sel-12 result in mitochondrial metabolic defects that promote neurodegeneration as a result of oxidative stress. In sel-12 mutants, elevated endoplasmic reticulum (ER)-mitochondrial Ca2+ signaling leads to an increase in mitochondrial Ca2+ content which stimulates mitochondrial respiration resulting in an increase in mitochondrial superoxide production. By reducing ER Ca2+ release, mitochondrial Ca2+ uptake or mitochondrial superoxides in sel-12 mutants, we demonstrate rescue of the mitochondrial metabolic defects and prevent neurodegeneration. These data suggest that mutations in PSEN alter mitochondrial metabolic function via ER to mitochondrial Ca2+ signaling and provide insight for alternative targets for treating neurodegenerative diseases.

Data availability

Source data files have be proved for all figures.

Article and author information

Author details

  1. Shaarika Sarasija

    Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3610-2178
  2. Jocelyn T Laboy

    Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zahra Ashkavand

    Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jennifer Bonner

    Department of Biology, Skidmore College, Saratoga Springs, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yi Tang

    Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kenneth R Norman

    Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
    For correspondence
    normank@mail.amc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0773-9073

Funding

National Institute of General Medical Sciences (GM088213)

  • Yi Tang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew Dillin, Howard Hughes Medical Institute, University of California, Berkeley, United States

Version history

  1. Received: October 24, 2017
  2. Accepted: July 9, 2018
  3. Accepted Manuscript published: July 10, 2018 (version 1)
  4. Version of Record published: August 3, 2018 (version 2)

Copyright

© 2018, Sarasija et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,493
    views
  • 610
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shaarika Sarasija
  2. Jocelyn T Laboy
  3. Zahra Ashkavand
  4. Jennifer Bonner
  5. Yi Tang
  6. Kenneth R Norman
(2018)
Presenilin mutations deregulate mitochondrial Ca2+ homeostasis and metabolic activity causing neurodegeneration in Caenorhabditis elegans
eLife 7:e33052.
https://doi.org/10.7554/eLife.33052

Share this article

https://doi.org/10.7554/eLife.33052

Further reading

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.

    1. Cell Biology
    Zhongyun Xie, Yongping Chai ... Wei Li
    Research Article

    Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+–adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD’s asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.