Structural insights into the assembly and polyA signal recognition mechanism of the human CPSF complex

  1. Marcello Clerici
  2. Marco Faini
  3. Ruedi Aebersold  Is a corresponding author
  4. Martin Jinek  Is a corresponding author
  1. University of Zurich, Switzerland
  2. Swiss Federal Institute of Technology, Switzerland

Abstract

3' polyadenylation is a key step in eukaryotic mRNA biogenesis. In mammalian cells, this process is dependent on the recognition of the hexanucleotide AAUAAA motif in the pre-mRNA polyadenylation signal by the Cleavage and Polyadenylation Specificity Factor (CPSF) complex. A core CPSF complex comprising CPSF160, WDR33, CPSF30 and Fip1 is sufficient for AAUAAA motif recognition, yet the molecular interactions underpinning its assembly and mechanism of PAS recognition are not understood. Based on cross-linking-coupled mass spectrometry, crystal structure of the CPSF160-WDR33 subcomplex and biochemical assays, we define the molecular architecture of the core human CPSF complex, identifying specific domains involved in inter-subunit interactions. In addition to zinc finger domains in CPSF30, we identify using quantitative RNA binding assays an N-terminal lysine/arginine-rich motif in WDR33 as a critical determinant of specific AAUAAA motif recognition. Together, these results shed light on the function of CPSF in mediating PAS-dependent RNA cleavage and polyadenylation.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Marcello Clerici

    Department of Biochemistry, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Marco Faini

    Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Ruedi Aebersold

    Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
    For correspondence
    aebersold@imsb.biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
  4. Martin Jinek

    Department of Biochemistry, University of Zurich, Zurich, Switzerland
    For correspondence
    jinek@bioc.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7601-210X

Funding

European Research Council (ERC-StG-337284)

  • Marcello Clerici
  • Martin Jinek

European Molecular Biology Organization (ALTF-343-2013)

  • Marco Faini

European Research Council (HEALTH-F4-2008-201648)

  • Ruedi Aebersold

European Research Council (233226)

  • Ruedi Aebersold

H2020 European Research Council (670821)

  • Ruedi Aebersold

Innovative Medicines Initiative Joint Undertaking (ULTRA-DD grant no. 115766)

  • Ruedi Aebersold

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Clerici et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,699
    views
  • 633
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marcello Clerici
  2. Marco Faini
  3. Ruedi Aebersold
  4. Martin Jinek
(2017)
Structural insights into the assembly and polyA signal recognition mechanism of the human CPSF complex
eLife 6:e33111.
https://doi.org/10.7554/eLife.33111

Share this article

https://doi.org/10.7554/eLife.33111

Further reading

    1. Biochemistry and Chemical Biology
    Luca Unione, Jesús Jiménez-Barbero
    Insight

    Glycans play an important role in modulating the interactions between natural killer cells and antibodies to fight pathogens and harmful cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.