Robust model-based analysis of single-particle tracking experiments with Spot-On

  1. Anders S Hansen  Is a corresponding author
  2. Maxime Woringer
  3. Jonathan B Grimm
  4. Luke D Lavis
  5. Robert Tjian  Is a corresponding author
  6. Xavier Darzacq  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Howard Hughes Medical Institute, United States

Abstract

Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Anders S Hansen

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    anders.sejr.hansen@berkeley.edu
    Competing interests
    No competing interests declared.
  2. Maxime Woringer

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2581-9808
  3. Jonathan B Grimm

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    Jonathan B Grimm, has filed patent applications (e.g. PCT/US2015/023953) whose value may be affected by this publication.
  4. Luke D Lavis

    Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    Luke D Lavis, has filed patent applications (e.g. PCT/US2015/023953) whose value may be affected by this publication.
  5. Robert Tjian

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jmlim@berkeley.edu
    Competing interests
    Robert Tjian, One of the three founding funders of eLife and a member of eLife's Board of Directors.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0539-8217
  6. Xavier Darzacq

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    darzacq@berkeley.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2537-8395

Funding

National Institutes of Health (UO1-EB021236)

  • Xavier Darzacq

National Institutes of Health (U54-DK107980)

  • Xavier Darzacq

California Institute for Regenerative Medicine (LA1-08013)

  • Xavier Darzacq

Howard Hughes Medical Institute (3061)

  • Robert Tjian

Howard Hughes Medical Institute

  • Luke D Lavis

Siebel Stem Cell Institute

  • Anders S Hansen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Sherratt, University of Oxford, United Kingdom

Version history

  1. Received: October 27, 2017
  2. Accepted: January 3, 2018
  3. Accepted Manuscript published: January 4, 2018 (version 1)
  4. Version of Record published: February 12, 2018 (version 2)

Copyright

© 2018, Hansen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,561
    views
  • 1,558
    downloads
  • 221
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anders S Hansen
  2. Maxime Woringer
  3. Jonathan B Grimm
  4. Luke D Lavis
  5. Robert Tjian
  6. Xavier Darzacq
(2018)
Robust model-based analysis of single-particle tracking experiments with Spot-On
eLife 7:e33125.
https://doi.org/10.7554/eLife.33125

Share this article

https://doi.org/10.7554/eLife.33125

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.