Rev7 and 53BP1/Crb2 prevent RecQ helicase-dependent hyper-resection of DNA double-strand breaks

  1. Bryan A Leland
  2. Angela C Chen
  3. Amy Y Zhao
  4. Robert C Wharton
  5. Megan C King  Is a corresponding author
  1. Yale School of Medicine, United States

Abstract

Poly(ADP ribose) polymerase inhibitors (PARPi) target cancer cells deficient in homology-directed repair of DNA double-strand breaks (DSBs). In preclinical models, PARPi resistance is tied to altered nucleolytic processing (resection) at the 5' ends of a DSB. For example, loss of 53BP1 or Rev7/MAD2L2/FANCV derepresses resection to drive PARPi resistance, although the mechanisms are poorly understood. Long-range resection can be catalyzed by two machineries: the exonuclease Exo1, or the combination of a RecQ helicase and Dna2. Here, we develop a single cell microscopy assay that allows the distinct phases and machineries of resection to be interrogated simultaneously in living S. pombe cells. Using this assay, we find that the 53BP1 orthologue and Rev7 specifically repress long-range resection through the RecQ helicase-dependent pathway, thereby preventing hyper-resection. These results suggest that 'rewiring' of BRCA1-deficient cells to employ an Exo1-independent hyper-resection pathway is a driver of PARPi resistance.

Data availability

Raw analysis for all individual cells included in plots, complete code, and other supporting materials are publicly available on GitHub github.com/lelandbr/Leland_King_2018_eLife_Rev7_EndResection. The raw movies for representative cells presented in the figures have been uploaded to Dryad [doi:10.5061/dryad.1db5500] . The full raw datasets (all cells, all fields, all movies) are available on request from the corresponding author (megan.king@yale.edu) as they are TBs in size.

The following data sets were generated

Article and author information

Author details

  1. Bryan A Leland

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Angela C Chen

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amy Y Zhao

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert C Wharton

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Megan C King

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    For correspondence
    megan.king@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1688-2226

Funding

National Science Foundation (DGE-1122492)

  • Bryan A Leland

National Institutes of Health (DP2OD008429-01)

  • Megan C King

Searle Scholars Program (Scholar Award)

  • Megan C King

National Institutes of Health (T32-HD-007180-40)

  • Bryan A Leland

The Gruber Foundation (Gruber Science Fellowship)

  • Bryan A Leland

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephen C Kowalczykowski, University of California, Davis, United States

Version history

  1. Received: November 8, 2017
  2. Accepted: April 11, 2018
  3. Accepted Manuscript published: April 26, 2018 (version 1)
  4. Version of Record published: May 10, 2018 (version 2)

Copyright

© 2018, Leland et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,776
    Page views
  • 338
    Downloads
  • 15
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bryan A Leland
  2. Angela C Chen
  3. Amy Y Zhao
  4. Robert C Wharton
  5. Megan C King
(2018)
Rev7 and 53BP1/Crb2 prevent RecQ helicase-dependent hyper-resection of DNA double-strand breaks
eLife 7:e33402.
https://doi.org/10.7554/eLife.33402

Share this article

https://doi.org/10.7554/eLife.33402

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristian Davidsen, Jonathan S Marvin ... Lucas B Sullivan
    Research Article

    Intracellular levels of the amino acid aspartate are responsive to changes in metabolism in mammalian cells and can correspondingly alter cell function, highlighting the need for robust tools to measure aspartate abundance. However, comprehensive understanding of aspartate metabolism has been limited by the throughput, cost, and static nature of the mass spectrometry (MS)-based measurements that are typically employed to measure aspartate levels. To address these issues, we have developed a green fluorescent protein (GFP)-based sensor of aspartate (jAspSnFR3), where the fluorescence intensity corresponds to aspartate concentration. As a purified protein, the sensor has a 20-fold increase in fluorescence upon aspartate saturation, with dose-dependent fluorescence changes covering a physiologically relevant aspartate concentration range and no significant off target binding. Expressed in mammalian cell lines, sensor intensity correlated with aspartate levels measured by MS and could resolve temporal changes in intracellular aspartate from genetic, pharmacological, and nutritional manipulations. These data demonstrate the utility of jAspSnFR3 and highlight the opportunities it provides for temporally resolved and high-throughput applications of variables that affect aspartate levels.

    1. Cell Biology
    2. Immunology and Inflammation
    Chinky Shiu Chen Liu, Tithi Mandal ... Dipyaman Ganguly
    Research Article

    T cells are crucial for efficient antigen-specific immune responses and thus their migration within the body, to inflamed tissues from circulating blood or to secondary lymphoid organs, plays a very critical role. T cell extravasation in inflamed tissues depends on chemotactic cues and interaction between endothelial adhesion molecules and cellular integrins. A migrating T cell is expected to sense diverse external and membrane-intrinsic mechano-physical cues, but molecular mechanisms of such mechanosensing in cell migration are not established. We explored if the professional mechanosensor Piezo1 plays any role during integrin-dependent chemotaxis of human T cells. We found that deficiency of Piezo1 in human T cells interfered with integrin-dependent cellular motility on ICAM-1-coated surface. Piezo1 recruitment at the leading edge of moving T cells is dependent on and follows focal adhesion formation at the leading edge and local increase in membrane tension upon chemokine receptor activation. Piezo1 recruitment and activation, followed by calcium influx and calpain activation, in turn, are crucial for the integrin LFA1 (CD11a/CD18) recruitment at the leading edge of the chemotactic human T cells. Thus, we find that Piezo1 activation in response to local mechanical cues constitutes a membrane-intrinsic component of the ‘outside-in’ signaling in human T cells, migrating in response to chemokines, that mediates integrin recruitment to the leading edge.