1. Cell Biology
  2. Chromosomes and Gene Expression
Download icon

Rev7 and 53BP1/Crb2 prevent RecQ helicase-dependent hyper-resection of DNA double-strand breaks

  1. Bryan A Leland
  2. Angela C Chen
  3. Amy Y Zhao
  4. Robert C Wharton
  5. Megan C King  Is a corresponding author
  1. Yale School of Medicine, United States
Short Report
  • Cited 11
  • Views 1,611
  • Annotations
Cite this article as: eLife 2018;7:e33402 doi: 10.7554/eLife.33402

Abstract

Poly(ADP ribose) polymerase inhibitors (PARPi) target cancer cells deficient in homology-directed repair of DNA double-strand breaks (DSBs). In preclinical models, PARPi resistance is tied to altered nucleolytic processing (resection) at the 5' ends of a DSB. For example, loss of 53BP1 or Rev7/MAD2L2/FANCV derepresses resection to drive PARPi resistance, although the mechanisms are poorly understood. Long-range resection can be catalyzed by two machineries: the exonuclease Exo1, or the combination of a RecQ helicase and Dna2. Here, we develop a single cell microscopy assay that allows the distinct phases and machineries of resection to be interrogated simultaneously in living S. pombe cells. Using this assay, we find that the 53BP1 orthologue and Rev7 specifically repress long-range resection through the RecQ helicase-dependent pathway, thereby preventing hyper-resection. These results suggest that 'rewiring' of BRCA1-deficient cells to employ an Exo1-independent hyper-resection pathway is a driver of PARPi resistance.

Data availability

Raw analysis for all individual cells included in plots, complete code, and other supporting materials are publicly available on GitHub github.com/lelandbr/Leland_King_2018_eLife_Rev7_EndResection. The raw movies for representative cells presented in the figures have been uploaded to Dryad [doi:10.5061/dryad.1db5500] . The full raw datasets (all cells, all fields, all movies) are available on request from the corresponding author (megan.king@yale.edu) as they are TBs in size.

The following data sets were generated

Article and author information

Author details

  1. Bryan A Leland

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Angela C Chen

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amy Y Zhao

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert C Wharton

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Megan C King

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    For correspondence
    megan.king@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1688-2226

Funding

National Science Foundation (DGE-1122492)

  • Bryan A Leland

National Institutes of Health (DP2OD008429-01)

  • Megan C King

Searle Scholars Program (Scholar Award)

  • Megan C King

National Institutes of Health (T32-HD-007180-40)

  • Bryan A Leland

The Gruber Foundation (Gruber Science Fellowship)

  • Bryan A Leland

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephen C Kowalczykowski, University of California, Davis, United States

Publication history

  1. Received: November 8, 2017
  2. Accepted: April 11, 2018
  3. Accepted Manuscript published: April 26, 2018 (version 1)
  4. Version of Record published: May 10, 2018 (version 2)

Copyright

© 2018, Leland et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,611
    Page views
  • 318
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Carolina Franco Nitta et al.
    Research Article Updated

    Crosstalk between different receptor tyrosine kinases (RTKs) is thought to drive oncogenic signaling and allow therapeutic escape. EGFR and RON are two such RTKs from different subfamilies, which engage in crosstalk through unknown mechanisms. We combined high-resolution imaging with biochemical and mutational studies to ask how EGFR and RON communicate. EGF stimulation promotes EGFR-dependent phosphorylation of RON, but ligand stimulation of RON does not trigger EGFR phosphorylation – arguing that crosstalk is unidirectional. Nanoscale imaging reveals association of EGFR and RON in common plasma membrane microdomains. Two-color single particle tracking captured formation of complexes between RON and EGF-bound EGFR. Our results further show that RON is a substrate for EGFR kinase, and that transactivation of RON requires formation of a signaling competent EGFR dimer. These results support a role for direct EGFR/RON interactions in propagating crosstalk, such that EGF-stimulated EGFR phosphorylates RON to activate RON-directed signaling.

    1. Cell Biology
    2. Neuroscience
    Angela Kim et al.
    Research Article Updated

    Insulin-induced hypoglycemia is a major treatment barrier in type-1 diabetes (T1D). Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon. Varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (8 to 4 mM) has no significant effect on glucagon secretion in the perfused mouse pancreas or in isolated mouse islets (in vitro), and yet associates with dramatic increases in plasma glucagon. The identity of the systemic factor(s) that elevates circulating glucagon remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Alpha-cells express high levels of the vasopressin 1b receptor (V1bR) gene (Avpr1b). Activation of AVP neurons in vivo increased circulating copeptin (the C-terminal segment of the AVP precursor peptide) and increased blood glucose; effects blocked by pharmacological antagonism of either the glucagon receptor or V1bR. AVP also mediates the stimulatory effects of hypoglycemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata drive AVP neuron activation in response to insulin-induced hypoglycemia. AVP injection increased cytoplasmic Ca2+ in alpha-cells (implanted into the anterior chamber of the eye) and glucagon release. Hypoglycemia also increases circulating levels of AVP/copeptin in humans and this hormone stimulates glucagon secretion from human islets. In patients with T1D, hypoglycemia failed to increase both copeptin and glucagon. These findings suggest that AVP is a physiological systemic regulator of glucagon secretion and that this mechanism becomes impaired in T1D.