Rev7 and 53BP1/Crb2 prevent RecQ helicase-dependent hyper-resection of DNA double-strand breaks

  1. Bryan A Leland
  2. Angela C Chen
  3. Amy Y Zhao
  4. Robert C Wharton
  5. Megan C King  Is a corresponding author
  1. Yale School of Medicine, United States

Abstract

Poly(ADP ribose) polymerase inhibitors (PARPi) target cancer cells deficient in homology-directed repair of DNA double-strand breaks (DSBs). In preclinical models, PARPi resistance is tied to altered nucleolytic processing (resection) at the 5' ends of a DSB. For example, loss of 53BP1 or Rev7/MAD2L2/FANCV derepresses resection to drive PARPi resistance, although the mechanisms are poorly understood. Long-range resection can be catalyzed by two machineries: the exonuclease Exo1, or the combination of a RecQ helicase and Dna2. Here, we develop a single cell microscopy assay that allows the distinct phases and machineries of resection to be interrogated simultaneously in living S. pombe cells. Using this assay, we find that the 53BP1 orthologue and Rev7 specifically repress long-range resection through the RecQ helicase-dependent pathway, thereby preventing hyper-resection. These results suggest that 'rewiring' of BRCA1-deficient cells to employ an Exo1-independent hyper-resection pathway is a driver of PARPi resistance.

Data availability

Raw analysis for all individual cells included in plots, complete code, and other supporting materials are publicly available on GitHub github.com/lelandbr/Leland_King_2018_eLife_Rev7_EndResection. The raw movies for representative cells presented in the figures have been uploaded to Dryad [doi:10.5061/dryad.1db5500] . The full raw datasets (all cells, all fields, all movies) are available on request from the corresponding author (megan.king@yale.edu) as they are TBs in size.

The following data sets were generated

Article and author information

Author details

  1. Bryan A Leland

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Angela C Chen

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amy Y Zhao

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert C Wharton

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Megan C King

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    For correspondence
    megan.king@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1688-2226

Funding

National Science Foundation (DGE-1122492)

  • Bryan A Leland

National Institutes of Health (DP2OD008429-01)

  • Megan C King

Searle Scholars Program (Scholar Award)

  • Megan C King

National Institutes of Health (T32-HD-007180-40)

  • Bryan A Leland

The Gruber Foundation (Gruber Science Fellowship)

  • Bryan A Leland

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Leland et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,848
    views
  • 349
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bryan A Leland
  2. Angela C Chen
  3. Amy Y Zhao
  4. Robert C Wharton
  5. Megan C King
(2018)
Rev7 and 53BP1/Crb2 prevent RecQ helicase-dependent hyper-resection of DNA double-strand breaks
eLife 7:e33402.
https://doi.org/10.7554/eLife.33402

Share this article

https://doi.org/10.7554/eLife.33402