Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme

  1. Zhening Zhang
  2. Wenguang G Liang
  3. Lucas J Bailey
  4. Yong Zi Tan
  5. Hui Wei
  6. Andrew Wang
  7. Mara Farcasanu
  8. Virgil A Woods
  9. Lauren A McCord
  10. David Lee
  11. Weifeng Shang
  12. Rebecca Deprez-Poulain
  13. Benoit Deprez
  14. David R Liu
  15. Akiko Koide
  16. Shohei Koide
  17. Anthony A Kossiakoff
  18. Sheng Li  Is a corresponding author
  19. Bridget Carragher  Is a corresponding author
  20. Clinton S Potter  Is a corresponding author
  21. Wei-Jen Tang  Is a corresponding author
  1. New York Structural Biology Center, United States
  2. The University of Chicago, United States
  3. University of California, San Diego, United States
  4. Argonne National Laboratory, United States
  5. Université de Lille, France
  6. Harvard University, United States
  7. New York University, United States

Abstract

Insulin degrading enzyme (IDE) plays key roles in degrading peptides vital in type 2 diabetes, Alzheimer's, inflammation, and other human diseases. However, the process through which IDE recognizes peptides that tend to form amyloid fibrils remained unsolved. We used cryoEM to understand both the apo- and insulin-bound dimeric IDE states, revealing that IDE displays a large opening between the homologous ~55 kDa N- and C-terminal halves to allow selective substrate capture based on size and charge complementarity. We also used cryoEM, X-ray crystallography, SAXS, and HDX-MS to elucidate the molecular basis of how amyloidogenic peptides stabilize the disordered IDE catalytic cleft, thereby inducing selective degradation by substrate-assisted catalysis. Furthermore, our insulin-bound IDE structures explain how IDE processively degrades insulin by stochastically cutting either chain without breaking disulfide bonds. Together, our studies provide a mechanism for how IDE selectively degrades amyloidogenic peptides and offers structural insights for developing IDE-based therapies.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Zhening Zhang

    National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Wenguang G Liang

    Ben-May Institute for Cancer Research, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucas J Bailey

    Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yong Zi Tan

    National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6656-6320
  5. Hui Wei

    National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrew Wang

    Ben-May Institute for Cancer Research, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mara Farcasanu

    Ben-May Institute for Cancer Research, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Virgil A Woods

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Lauren A McCord

    Ben-May Institute for Cancer Research, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. David Lee

    Department of Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Weifeng Shang

    BioCAT, Argonne National Laboratory, Argonne, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Rebecca Deprez-Poulain

    U1177 - Drug and Molecules for Living Systems, Université de Lille, Lille, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Benoit Deprez

    U1177 - Drug and Molecules for Living Systems, Université de Lille, Lille, France
    Competing interests
    The authors declare that no competing interests exist.
  14. David R Liu

    Department of Chemistry and Chemical Biology, Harvard University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Akiko Koide

    Perlmutter Cancer Center, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Shohei Koide

    Perlmutter Cancer Center, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Anthony A Kossiakoff

    Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Sheng Li

    Department of Medicine, University of California, San Diego, La Jolla, United States
    For correspondence
    s4li@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
  19. Bridget Carragher

    National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States
    For correspondence
    bcarr@nysbc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0624-5020
  20. Clinton S Potter

    National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States
    For correspondence
    cpotter@nysbc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2394-0831
  21. Wei-Jen Tang

    Ben-May Institute for Cancer Research, The University of Chicago, Chicago, United States
    For correspondence
    wtang@bsd.uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8267-8995

Funding

National Institutes of Health (GM81539)

  • Wei-Jen Tang

Defense Advanced Research Projects Agency (N66001-14-2-4053)

  • David R Liu

Simons Foundation (349247)

  • Bridget Carragher
  • Clinton S Potter

National Institutes of Health (GM121964)

  • Wei-Jen Tang

National Institutes of Health (GM103310)

  • Bridget Carragher
  • Clinton S Potter

National Institutes of Health (R35 GM118062)

  • David R Liu

Howard Hughes Medical Institute

  • David R Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,037
    views
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhening Zhang
  2. Wenguang G Liang
  3. Lucas J Bailey
  4. Yong Zi Tan
  5. Hui Wei
  6. Andrew Wang
  7. Mara Farcasanu
  8. Virgil A Woods
  9. Lauren A McCord
  10. David Lee
  11. Weifeng Shang
  12. Rebecca Deprez-Poulain
  13. Benoit Deprez
  14. David R Liu
  15. Akiko Koide
  16. Shohei Koide
  17. Anthony A Kossiakoff
  18. Sheng Li
  19. Bridget Carragher
  20. Clinton S Potter
  21. Wei-Jen Tang
(2018)
Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme
eLife 7:e33572.
https://doi.org/10.7554/eLife.33572

Share this article

https://doi.org/10.7554/eLife.33572

Further reading

    1. Structural Biology and Molecular Biophysics
    Liliana R Teixeira, Radha Akella ... Elizabeth J Goldsmith
    Research Article

    Osmotic stress and chloride regulate the autophosphorylation and activity of the WNK1 and WNK3 kinase domains. The kinase domain of unphosphorylated WNK1 (uWNK1) is an asymmetric dimer possessing water molecules conserved in multiple uWNK1 crystal structures. Conserved waters are present in two networks, referred to here as conserved water networks 1 and 2 (CWN1 and CWN2). Here, we show that PEG400 applied to crystals of dimeric uWNK1 induces de-dimerization. Both the WNK1 the water networks and the chloride-binding site are disrupted by PEG400. CWN1 is surrounded by a cluster of pan-WNK-conserved charged residues. Here, we mutagenized these charges in WNK3, a highly active WNK isoform kinase domain, and WNK1, the isoform best studied crystallographically. Mutation of E314 in the Activation Loop of WNK3 (WNK3/E314Q and WNK3/E314A, and the homologous WNK1/E388A) enhanced the rate of autophosphorylation, and reduced chloride sensitivity. Other WNK3 mutants reduced the rate of autophosphorylation activity coupled with greater chloride sensitivity than wild-type. The water and chloride regulation thus appear linked. The lower activity of some mutants may reflect effects on catalysis. Crystallography showed that activating mutants introduced conformational changes in similar parts of the structure to those induced by PEG400. WNK activating mutations and crystallography support a role for CWN1 in WNK inhibition consistent with water functioning as an allosteric ligand.

    1. Structural Biology and Molecular Biophysics
    Jinsai Shang, Douglas J Kojetin
    Research Advance

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous and synthetic ligands, including covalent antagonist inhibitors GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent inhibitors weaken—but do not prevent—the binding of other ligands via an allosteric mechanism, rather than direct ligand clashing, by shifting the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with orthosteric ligand binding. Crystal structures reveal different cobinding mechanisms including alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent inhibitor binding pose. Our findings highlight the significant flexibility of the PPARγ orthosteric pocket, its ability to accommodate multiple ligands, and demonstrate that GW9662 and T0070907 should not be used as chemical tools to inhibit ligand binding to PPARγ.