Structure-based membrane dome mechanism for Piezo mechanosensitivity

  1. Yusong R Guo
  2. Roderick MacKinnon  Is a corresponding author
  1. The Rockefeller University, United States

Abstract

Mechanosensitive ion channels convert external mechanical stimuli into electrochemical signals for critical processes including touch sensation, balance, and cardiovascular regulation. The best understood mechanosensitive channel, MscL, opens a wide pore, which accounts for mechanosensitive gating due to in-plane area expansion. Eukaryotic Piezo channels have a narrow pore and therefore must capture mechanical forces to control gating in another way. We present a cryo-EM structure of mouse Piezo1 in a closed conformation at 3.7Å-resolution. The channel is a triskelion with arms consisting of repeated arrays of 4-TM structural units surrounding a pore. Its shape deforms the membrane locally into a dome. We present a hypothesis in which the membrane deformation changes upon channel opening. Quantitatively, membrane tension will alter gating energetics in proportion to the change in projected area under the dome. This mechanism can account for highly sensitive mechanical gating in the setting of a narrow, cation-selective pore.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Yusong R Guo

    Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8563-3397
  2. Roderick MacKinnon

    Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, United States
    For correspondence
    mackinn@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7605-4679

Funding

Howard Hughes Medical Institute (Investigator)

  • Roderick MacKinnon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Guo & MacKinnon

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,553
    views
  • 2,607
    downloads
  • 308
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yusong R Guo
  2. Roderick MacKinnon
(2017)
Structure-based membrane dome mechanism for Piezo mechanosensitivity
eLife 6:e33660.
https://doi.org/10.7554/eLife.33660

Share this article

https://doi.org/10.7554/eLife.33660

Further reading

  1. Edited by Kenton J Swartz et al.
    Collection

    eLife has published papers on topics related to the molecular structure and functional mechanisms of a diverse array of ion channel proteins.

    1. Structural Biology and Molecular Biophysics
    Artem N Bonchuk, Konstantin I Balagurov ... Pavel G Georgiev
    Research Article Updated

    BTB (bric-a-brack, Tramtrack, and broad complex) is a diverse group of protein-protein interaction domains found within metazoan proteins. Transcription factors contain a dimerizing BTB subtype with a characteristic N-terminal extension. The Tramtrack group (TTK) is a distinct type of BTB domain, which can multimerize. Single-particle cryo-EM microscopy revealed that the TTK-type BTB domains assemble into a hexameric structure consisting of three canonical BTB dimers connected through a previously uncharacterized interface. We demonstrated that the TTK-type BTB domains are found only in Arthropods and have undergone lineage-specific expansion in modern insects. The Drosophila genome encodes 24 transcription factors with TTK-type BTB domains, whereas only four have non-TTK-type BTB domains. Yeast two-hybrid analysis revealed that the TTK-type BTB domains have an unusually broad potential for heteromeric associations presumably through a dimer-dimer interaction interface. Thus, the TTK-type BTB domains are a structurally and functionally distinct group of protein domains specific to Arthropodan transcription factors.