Free energy simulations reveal molecular mechanism for functional switch of a DNA helicase

  1. Wen Ma
  2. Kevin D Whitley
  3. Yann R Chemla  Is a corresponding author
  4. Zaida Luthey-Schulten  Is a corresponding author
  5. Klaus Schulten
  1. University of Illinois at Urbana-Champaign, United States

Abstract

Helicases play key roles in genome maintenance, yet it remains elusive how these enzymes change conformations and how transitions between different conformational states regulate nucleic acid reshaping. Here we developed a computational technique combining structural bioinformatics approaches and atomic-level free energy simulations to characterize how the E. coli DNA repair enzyme UvrD changes its conformation at the fork junction to switch its function from unwinding to rezipping DNA. The lowest free energy path shows that UvrD opens the interface between two domains, allowing the bound ssDNA to escape. The simulation results predict a key metastable 'tilted' state during ssDNA strand switching. By simulating FRET distributions with fluorophores attached to UvrD, we show that the new state is supported quantitatively by single-molecule measurements. The present study deciphers key elements for the 'hyper-helicase' behavior of a mutant, and provides an effective framework to characterize directly structure-function relationships in molecular machines.

Data availability

The PDB file of our predicted structure (tilted state) has been uploaded as Supplementary File 1.

Article and author information

Author details

  1. Wen Ma

    Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kevin D Whitley

    Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yann R Chemla

    Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    ychemla@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9167-0234
  4. Zaida Luthey-Schulten

    Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    zan@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9749-8367
  5. Klaus Schulten

    Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of General Medical Sciences (9P41GM104601)

  • Zaida Luthey-Schulten
  • Klaus Schulten

National Science Foundation (PHY-1430124)

  • Yann R Chemla
  • Zaida Luthey-Schulten
  • Klaus Schulten

National Institute of General Medical Sciences (R01 GM120353)

  • Yann R Chemla

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Ma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,011
    views
  • 407
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wen Ma
  2. Kevin D Whitley
  3. Yann R Chemla
  4. Zaida Luthey-Schulten
  5. Klaus Schulten
(2018)
Free energy simulations reveal molecular mechanism for functional switch of a DNA helicase
eLife 7:e34186.
https://doi.org/10.7554/eLife.34186

Share this article

https://doi.org/10.7554/eLife.34186

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Rosalio Reyes, Arthur D Lander, Marcos Nahmad
    Research Article

    Understanding the principles underlying the design of robust, yet flexible patterning systems is a key problem in developmental biology. In the Drosophila wing, Hedgehog (Hh) signaling determines patterning outputs using dynamical properties of the Hh gradient. In particular, the pattern of collier (col) is established by the steady-state Hh gradient, whereas the pattern of decapentaplegic (dpp), is established by a transient gradient of Hh known as the Hh overshoot. Here we use mathematical modeling to suggest that this dynamical interpretation of the Hh gradient results in specific robustness and precision properties. For instance, the location of the anterior border of col, which is subject to self-enhanced ligand degradation is more robustly specified than that of dpp to changes in morphogen dosage, and we provide experimental evidence of this prediction. However, the anterior border of dpp expression pattern, which is established by the overshoot gradient is much more precise to what would be expected by the steady-state gradient. Therefore, the dynamical interpretation of Hh signaling offers tradeoffs between

    1. Computational and Systems Biology
    2. Neuroscience
    Sebastian Quiroz Monnens, Casper Peters ... Bernhard Englitz
    Research Advance

    Animal behaviour alternates between stochastic exploration and goal-directed actions, which are generated by the underlying neural dynamics. Previously, we demonstrated that the compositional Restricted Boltzmann Machine (cRBM) can decompose whole-brain activity of larval zebrafish data at the neural level into a small number (∼100-200) of assemblies that can account for the stochasticity of the neural activity (van der Plas et al., eLife, 2023). Here, we advance this representation by extending to a combined stochastic-dynamical representation to account for both aspects using the recurrent temporal RBM (RTRBM) and transfer-learning based on the cRBM estimate. We demonstrate that the functional advantage of the RTRBM is captured in the temporal weights on the hidden units, representing neural assemblies, for both simulated and experimental data. Our results show that the temporal expansion outperforms the stochastic-only cRBM in terms of generalization error and achieves a more accurate representation of the moments in time. Lastly, we demonstrate that we can identify the original time-scale of assembly dynamics by estimating multiple RTRBMs at different temporal resolutions. Together, we propose that RTRBMs are a valuable tool for capturing the combined stochastic and time-predictive dynamics of large-scale data sets.