Gene family innovation, conservation and loss on the animal stem lineage

  1. Daniel J Richter
  2. Parinaz Fozouni
  3. Michael Eisen
  4. Nicole King  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California, Berkeley, United States

Abstract

Choanoflagellates, the closest living relatives of animals, can provide unique insights into the changes in gene content that preceded the origin of animals. However, only two choanoflagellate genomes are currently available, providing poor coverage of their diversity. We sequenced transcriptomes of 19 additional choanoflagellate species to produce a comprehensive reconstruction of the gains and losses that shaped the ancestral animal gene repertoire. We identified ~1,944 gene families that originated on the animal stem lineage, of which only 39 are conserved across all animals in our study. In addition, ~372 gene families previously thought to be animal-specific, including Notch, Delta, and homologs of the animal Toll-like receptor genes, instead evolved prior to the animal-choanoflagellate divergence. Our findings contribute to an increasingly detailed portrait of the gene families that defined the biology of the Urmetazoan and that may underpin core features of extant animals.

Data availability

Raw sequencing reads have been deposited at the NCBI SRA under BioProject PRJNA419411 (19 choanoflagellate transcriptomes) and PRJNA420352 (S. rosetta polyA selection test). Transcriptome assemblies, annotations, and gene families are available on FigShare at DOI: 10.6084/m9.figshare.5686984. Transcriptome assemblies have also been submitted to the NCBI Transcriptome Shotgun Assembly database under BioProject PRJNA419411. Protocols have been deposited to protocols.io and are accessible at DOI: 10.17504/protocols.io.kwscxee.Details on the datasets available via figshare:Dataset 1. Final sets of contigs from choanoflagellate transcriptome assemblies. There is one FASTA file per sequenced choanoflagellate. We assembled contigs de novo with Trinity, followed by removal of cross-contamination that occurred within multiplexed Illumina sequencing lanes, removal of contigs encoding strictly redundant protein sequences, and elimination of noise contigs with extremely low (FPKM < 0.01) expression levels.Dataset 2. Final sets of proteins from choanoflagellate transcriptome assemblies. There is one FASTA file per sequenced choanoflagellate. We assembled contigs de novo with Trinity, followed by removal of cross-contamination that occurred within multiplexed Illumina sequencing lanes, removal of strictly redundant protein sequences, and elimination of proteins encoded on noise contigs with extremely low (FPKM < 0.01) expression levels.Dataset 3. Expression levels of assembled choanoflagellate contigs. Expression levels are shown in FPKM, as calculated by eXpress. Percentile expression rank is calculated separately for each choanoflagellate.Dataset 4. Protein sequences for all members of each gene family. This includes sequences from all species within the data set (i.e., it is not limited to the choanoflagellates we sequenced).Dataset 5. Gene families, group presences, and species probabilities. For each gene family, the protein members are listed. Subsequent columns contain inferred gene family presences in different groups of species, followed by probabilities of presence in individual species in the data set.Dataset 6. List of gene families present, gained and lost in last common ancestors of interest. A value of 1 indicates that the gene family was present, gained or lost; a value of 0 indicates that it was not. The six last common ancestors are: Ureukaryote, Uropisthokont, Urholozoan, Urchoanozoan, Urchoanoflagellate and Urmetazoan. Gains and losses are not shown for the Ureukaryote, as our data set only contained eukaryote species and was thus not appropriate to quantify changes occurring on the eukaryotic stem lineage.Dataset 7. Pfam, transmembrane, signal peptide, PANTHER and Gene Ontology annotations for all proteins. Annotations are listed for all proteins in the data set, including those not part of any gene family. Pfam domains are delimited by a tilde (~) and Gene Ontology terms by a semicolon (;). Transmembrane domains and signal peptides are indicated by the number present in the protein, followed by their coordinates in the protein sequence.Dataset 8. Pfam, transmembrane, signal peptide, PANTHER and Gene Ontology annotations aggregated by gene family. The proportion of proteins within the gene family that were assigned an annotation is followed by the name of the annotation. Multiple annotations are delimited by a semicolon (;)

The following data sets were generated

Article and author information

Author details

  1. Daniel J Richter

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9238-5571
  2. Parinaz Fozouni

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Eisen

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7528-738X
  4. Nicole King

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    For correspondence
    nking@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6409-1111

Funding

Howard Hughes Medical Institute

  • Michael Eisen
  • Nicole King

National Institutes of Health

  • Nicole King

U.S. Department of Defense (National Defense Science and Engineering Graduate Fellowship)

  • Daniel J Richter

National Science Foundation (Central Europe Summer Research Institute Fellowship)

  • Daniel J Richter

Chang-Lin Tien Fellowship in Environmental Sciences and Biodiversity

  • Daniel J Richter

Conseil Régional de Bretagne (Postdoctoral Fellowship)

  • Daniel J Richter

Investissements d'Avenir (ANR-11-BTBR-0008)

  • Daniel J Richter

National Science Foundation (955517)

  • Parinaz Fozouni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maximilian J Telford, University College London, United Kingdom

Publication history

  1. Received: December 10, 2017
  2. Accepted: May 26, 2018
  3. Accepted Manuscript published: May 31, 2018 (version 1)
  4. Accepted Manuscript updated: June 15, 2018 (version 2)
  5. Version of Record published: July 3, 2018 (version 3)

Copyright

© 2018, Richter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,906
    Page views
  • 940
    Downloads
  • 87
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel J Richter
  2. Parinaz Fozouni
  3. Michael Eisen
  4. Nicole King
(2018)
Gene family innovation, conservation and loss on the animal stem lineage
eLife 7:e34226.
https://doi.org/10.7554/eLife.34226
  1. Further reading

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Beatriz Navarro-Dominguez et al.
    Research Article Updated

    Meiotic drive supergenes are complexes of alleles at linked loci that together subvert Mendelian segregation resulting in preferential transmission. In males, the most common mechanism of drive involves the disruption of sperm bearing one of a pair of alternative alleles. While at least two loci are important for male drive—the driver and the target—linked modifiers can enhance drive, creating selection pressure to suppress recombination. In this work, we investigate the evolution and genomic consequences of an autosomal, multilocus, male meiotic drive system, Segregation Distorter (SD) in the fruit fly, Drosophila melanogaster. In African populations, the predominant SD chromosome variant, SD-Mal, is characterized by two overlapping, paracentric inversions on chromosome arm 2R and nearly perfect (~100%) transmission. We study the SD-Mal system in detail, exploring its components, chromosomal structure, and evolutionary history. Our findings reveal a recent chromosome-scale selective sweep mediated by strong epistatic selection for haplotypes carrying Sd, the main driving allele, and one or more factors within the double inversion. While most SD-Mal chromosomes are homozygous lethal, SD-Mal haplotypes can recombine with other, complementing haplotypes via crossing over, and with wildtype chromosomes via gene conversion. SD-Mal chromosomes have nevertheless accumulated lethal mutations, excess non-synonymous mutations, and excess transposable element insertions. Therefore, SD-Mal haplotypes evolve as a small, semi-isolated subpopulation with a history of strong selection. These results may explain the evolutionary turnover of SD haplotypes in different populations around the world and have implications for supergene evolution broadly.

    1. Ecology
    2. Evolutionary Biology
    Longhui Zhao et al.
    Research Article Updated

    Many animals rely on complex signals that target multiple senses to attract mates and repel rivals. These multimodal displays can however also attract unintended receivers, which can be an important driver of signal complexity. Despite being taxonomically widespread, we often lack insight into how multimodal signals evolve from unimodal signals and in particular what roles unintended eavesdroppers play. Here, we assess whether the physical movements of parasite defense behavior increase the complexity and attractiveness of an acoustic sexual signal in the little torrent frog (Amolops torrentis). Calling males of this species often display limb movements in order to defend against blood-sucking parasites such as frog-biting midges that eavesdrop on their acoustic signal. Through mate choice tests we show that some of these midge-evoked movements influence female preference for acoustic signals. Our data suggest that midge-induced movements may be incorporated into a sexual display, targeting both hearing and vision in the intended receiver. Females may play an important role in incorporating these multiple components because they prefer signals which combine multiple modalities. Our results thus help to understand the relationship between natural and sexual selection pressure operating on signalers and how in turn this may influence multimodal signal evolution.