HIV-1 Env trimer opens through an asymmetric intermediate in which individual protomers adopt distinct conformations

  1. Xiaochu Ma
  2. Maolin Lu
  3. Jason Gorman
  4. Daniel S Terry
  5. Xinyu Hong
  6. Zhou Zhou
  7. Hong Zhao
  8. Roger B Altman
  9. James Arthos
  10. Scott C Blanchard
  11. Peter D Kwong
  12. James B Munro  Is a corresponding author
  13. Walther Mothes  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States
  3. Weill Cornell Medical College of Cornell University, United States
  4. Tufts University School of Medicine, United States

Abstract

HIV-1 entry into cells requires binding of the viral envelope glycoprotein (Env) to receptor CD4 and coreceptor. Imaging of individual Env molecules on native virions shows Env trimers to be dynamic, spontaneously transitioning between three distinct well-populated conformational states: a pre-triggered Env (State 1), a default intermediate (State 2) and a three-CD4-bound conformation (State 3), which can be stabilized by binding of CD4 and coreceptor-surrogate antibody 17b. Here, using single-molecule Fluorescence Resonance Energy Transfer (smFRET), we show the default intermediate configuration to be asymmetric, with individual protomers adopting distinct conformations. During entry, this asymmetric intermediate forms when a single CD4 molecule engages the trimer. The trimer can then transition to State 3 by binding additional CD4 molecules and coreceptor.

Article and author information

Author details

  1. Xiaochu Ma

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  2. Maolin Lu

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  3. Jason Gorman

    Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  4. Daniel S Terry

    Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, United States
    Competing interests
    No competing interests declared.
  5. Xinyu Hong

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  6. Zhou Zhou

    Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, United States
    Competing interests
    No competing interests declared.
  7. Hong Zhao

    Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, United States
    Competing interests
    No competing interests declared.
  8. Roger B Altman

    Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, United States
    Competing interests
    No competing interests declared.
  9. James Arthos

    Immunopathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  10. Scott C Blanchard

    Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2717-9365
  11. Peter D Kwong

    Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  12. James B Munro

    Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
    For correspondence
    james.munro@tufts.edu
    Competing interests
    No competing interests declared.
  13. Walther Mothes

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    For correspondence
    walther.mothes@yale.edu
    Competing interests
    Walther Mothes, Patent applications pertaining to this work are U.S. Patent Application 13/202,351, Methods and Compositions for Altering Photophysical Properties of Fluorophores via Proximal Quenching (S.C.B., Z.Z.); U.S. Patent Application 14/373,402 Dye Compositions, Methods of Preparation, Conjugates Thereof, and Methods of Use (S.C.B., Z.Z.); and International and US Patent Application PCT/US13/42249 Reagents and Methods for Identifying Anti-HIV Compounds (S.C.B., J.B.M., W.M.). S.C.B. is a co-founder of Lumidyne Corporation.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3367-7240

Funding

National Institutes of Health (GM116654)

  • Walther Mothes

National Institutes of Health (AI116262)

  • James B Munro

National Institutes of Health (GM098859)

  • Scott C Blanchard

National Institutes of Health (GM056550)

  • Scott C Blanchard
  • Walther Mothes

Cancer Research Institute (Irvington Fellows Program)

  • James B Munro

National Institutes of Health (AI042853)

  • James B Munro

China Scholarship Council (Yale World Scholars)

  • Xiaochu Ma

National Institutes of Health (GM103310)

  • Peter D Kwong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,401
    views
  • 616
    downloads

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaochu Ma
  2. Maolin Lu
  3. Jason Gorman
  4. Daniel S Terry
  5. Xinyu Hong
  6. Zhou Zhou
  7. Hong Zhao
  8. Roger B Altman
  9. James Arthos
  10. Scott C Blanchard
  11. Peter D Kwong
  12. James B Munro
  13. Walther Mothes
(2018)
HIV-1 Env trimer opens through an asymmetric intermediate in which individual protomers adopt distinct conformations
eLife 7:e34271.
https://doi.org/10.7554/eLife.34271

Share this article

https://doi.org/10.7554/eLife.34271

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Iti Mehta, Jacob B Hogins ... Larry Reitzer
    Research Article

    Polyamines are biologically ubiquitous cations that bind to nucleic acids, ribosomes, and phospholipids and, thereby, modulate numerous processes, including surface motility in Escherichia coli. We characterized the metabolic pathways that contribute to polyamine-dependent control of surface motility in the commonly used strain W3110 and the transcriptome of a mutant lacking a putrescine synthetic pathway that was required for surface motility. Genetic analysis showed that surface motility required type 1 pili, the simultaneous presence of two independent putrescine anabolic pathways, and modulation by putrescine transport and catabolism. An immunological assay for FimA—the major pili subunit, reverse transcription quantitative PCR of fimA, and transmission electron microscopy confirmed that pili synthesis required putrescine. Comparative RNAseq analysis of a wild type and ΔspeB mutant which exhibits impaired pili synthesis showed that the latter had fewer transcripts for pili structural genes and for fimB which codes for the phase variation recombinase that orients the fim operon promoter in the ON phase, although loss of speB did not affect the promoter orientation. Results from the RNAseq analysis also suggested (a) changes in transcripts for several transcription factor genes that affect fim operon expression, (b) compensatory mechanisms for low putrescine which implies a putrescine homeostatic network, and (c) decreased transcripts of genes for oxidative energy metabolism and iron transport which a previous genetic analysis suggests may be sufficient to account for the pili defect in putrescine synthesis mutants. We conclude that pili synthesis requires putrescine and putrescine concentration is controlled by a complex homeostatic network that includes the genes of oxidative energy metabolism.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.