Optogenetic dissection of descending behavioral control in Drosophila

  1. Jessica Cande
  2. Shigehiro Namiki
  3. Jirui Qiu
  4. Wyatt Korff
  5. Gwyneth M Card
  6. Josh W Shaevitz
  7. David L Stern  Is a corresponding author
  8. Gordon J Berman  Is a corresponding author
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States
  2. Emory University, United States
  3. Princeton University, United States

Abstract

In most animals, the brain makes behavioral decisions that are transmitted by descending neurons to the nerve cord circuitry that produces behaviors. In insects, only a few descending neurons have been associated with specific behaviors. To explore how descending neurons control an insect's movements, we developed a novel method to systematically assay the behavioral effects of activating individual neurons on freely behaving terrestrial D. melanogaster. We calculated a two-dimensional representation of the entire behavior space explored by these flies and we associated descending neurons with specific behaviors by identifying regions of this space that were visited with increased frequency during optogenetic activation. Applying this approach across a large collection of descending neurons, we found that (1) activation of most of the descending neurons drove stereotyped behaviors, (2) in many cases multiple descending neurons activated similar behaviors, and (3) optogenetically-activated behaviors were often dependent on the behavioral state prior to activation.

Data availability

Videos including one second before until one second after activation for all flies during all treatments have been uploaded to Dryad (doi:10.5061/dryad.fr89c0c). We slowed down these movies 4X to allow easier examination.

The following data sets were generated

Article and author information

Author details

  1. Jessica Cande

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shigehiro Namiki

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1559-799X
  3. Jirui Qiu

    Department of Physics, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wyatt Korff

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8396-1533
  5. Gwyneth M Card

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7679-3639
  6. Josh W Shaevitz

    Department of Physics, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David L Stern

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    sternd@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1847-6483
  8. Gordon J Berman

    Department of Physics, Emory University, Atlanta, United States
    For correspondence
    gordon.berman@emory.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3588-7820

Funding

Howard Hughes Medical Institute

  • Jessica Cande
  • Shigehiro Namiki
  • Wyatt Korff
  • Gwyneth M Card
  • David L Stern

National Institutes of Health

  • Josh W Shaevitz
  • Gordon J Berman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Cande et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,429
    views
  • 944
    downloads
  • 135
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jessica Cande
  2. Shigehiro Namiki
  3. Jirui Qiu
  4. Wyatt Korff
  5. Gwyneth M Card
  6. Josh W Shaevitz
  7. David L Stern
  8. Gordon J Berman
(2018)
Optogenetic dissection of descending behavioral control in Drosophila
eLife 7:e34275.
https://doi.org/10.7554/eLife.34275

Share this article

https://doi.org/10.7554/eLife.34275

Further reading

    1. Neuroscience
    Matthieu Louis, Julie H Simpson
    Insight

    The neurons that connect the brain and ventral nerve cord in fruit flies have been mapped in unprecedented detail.

    1. Neuroscience
    Tanja Fuchsberger, Imogen Stockwell ... Ole Paulsen
    Research Advance

    The reward and novelty-related neuromodulator dopamine plays an important role in hippocampal long-term memory, which is thought to involve protein-synthesis-dependent synaptic plasticity. However, the direct effects of dopamine on protein synthesis, and the functional implications of newly synthesised proteins for synaptic plasticity, have not yet been investigated. We have previously reported that timing-dependent synaptic depression (t-LTD) can be converted into potentiation by dopamine application during synaptic stimulation (Brzosko et al., 2015) or postsynaptic burst activation (Fuchsberger et al., 2022). Here, we show that dopamine increases protein synthesis in mouse hippocampal CA1 neurons, enabling dopamine-dependent long-term potentiation (DA-LTP), which is mediated via the Ca2+-sensitive adenylate cyclase (AC) subtypes 1/8, cAMP, and cAMP-dependent protein kinase (PKA). We found that neuronal activity is required for the dopamine-induced increase in protein synthesis. Furthermore, dopamine induced a protein-synthesis-dependent increase in the AMPA receptor subunit GluA1, but not GluA2. We found that DA-LTP is absent in GluA1 knock-out mice and that it requires calcium-permeable AMPA receptors. Taken together, our results suggest that dopamine together with neuronal activity controls synthesis of plasticity-related proteins, including GluA1, which enable DA-LTP via a signalling pathway distinct from that of conventional LTP.