Optogenetic dissection of descending behavioral control in Drosophila

  1. Jessica Cande
  2. Shigehiro Namiki
  3. Jirui Qiu
  4. Wyatt Korff
  5. Gwyneth M Card
  6. Josh W Shaevitz
  7. David L Stern  Is a corresponding author
  8. Gordon J Berman  Is a corresponding author
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States
  2. Emory University, United States
  3. Princeton University, United States

Abstract

In most animals, the brain makes behavioral decisions that are transmitted by descending neurons to the nerve cord circuitry that produces behaviors. In insects, only a few descending neurons have been associated with specific behaviors. To explore how descending neurons control an insect's movements, we developed a novel method to systematically assay the behavioral effects of activating individual neurons on freely behaving terrestrial D. melanogaster. We calculated a two-dimensional representation of the entire behavior space explored by these flies and we associated descending neurons with specific behaviors by identifying regions of this space that were visited with increased frequency during optogenetic activation. Applying this approach across a large collection of descending neurons, we found that (1) activation of most of the descending neurons drove stereotyped behaviors, (2) in many cases multiple descending neurons activated similar behaviors, and (3) optogenetically-activated behaviors were often dependent on the behavioral state prior to activation.

Data availability

Videos including one second before until one second after activation for all flies during all treatments have been uploaded to Dryad (doi:10.5061/dryad.fr89c0c). We slowed down these movies 4X to allow easier examination.

The following data sets were generated

Article and author information

Author details

  1. Jessica Cande

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shigehiro Namiki

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1559-799X
  3. Jirui Qiu

    Department of Physics, Emory University, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wyatt Korff

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8396-1533
  5. Gwyneth M Card

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7679-3639
  6. Josh W Shaevitz

    Department of Physics, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David L Stern

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    sternd@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1847-6483
  8. Gordon J Berman

    Department of Physics, Emory University, Atlanta, United States
    For correspondence
    gordon.berman@emory.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3588-7820

Funding

Howard Hughes Medical Institute

  • Jessica Cande
  • Shigehiro Namiki
  • Wyatt Korff
  • Gwyneth M Card
  • David L Stern

National Institutes of Health

  • Josh W Shaevitz
  • Gordon J Berman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kristin Scott, University of California, Berkeley, Berkeley, United States

Publication history

  1. Received: December 12, 2017
  2. Accepted: June 3, 2018
  3. Accepted Manuscript published: June 26, 2018 (version 1)
  4. Version of Record published: July 4, 2018 (version 2)

Copyright

© 2018, Cande et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,033
    Page views
  • 823
    Downloads
  • 59
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jessica Cande
  2. Shigehiro Namiki
  3. Jirui Qiu
  4. Wyatt Korff
  5. Gwyneth M Card
  6. Josh W Shaevitz
  7. David L Stern
  8. Gordon J Berman
(2018)
Optogenetic dissection of descending behavioral control in Drosophila
eLife 7:e34275.
https://doi.org/10.7554/eLife.34275
  1. Further reading

Further reading

    1. Neuroscience
    Matthieu Louis, Julie H Simpson
    Insight

    The neurons that connect the brain and ventral nerve cord in fruit flies have been mapped in unprecedented detail.

    1. Developmental Biology
    2. Neuroscience
    Matthew P Bostock, Anadika R Prasad ... Vilaiwan M Fernandes
    Research Article Updated

    Defining the origin of neuronal diversity is a major challenge in developmental neurobiology. The Drosophila visual system is an excellent paradigm to study how cellular diversity is generated. Photoreceptors from the eye disc grow their axons into the optic lobe and secrete Hedgehog (Hh) to induce the lamina, such that for every unit eye there is a corresponding lamina unit made up of post-mitotic precursors stacked into columns. Each differentiated column contains five lamina neuron types (L1-L5), making it the simplest neuropil in the optic lobe, yet how this diversity is generated was unknown. Here, we found that Hh pathway activity is graded along the distal-proximal axis of lamina columns, and further determined that this gradient in pathway activity arises from a gradient of Hh ligand. We manipulated Hh pathway activity cell autonomously in lamina precursors and non-cell autonomously by inactivating the Hh ligand and by knocking it down in photoreceptors. These manipulations showed that different thresholds of activity specify unique cell identities, with more proximal cell types specified in response to progressively lower Hh levels. Thus, our data establish that Hh acts as a morphogen to pattern the lamina. Although this is the first such report during Drosophila nervous system development, our work uncovers a remarkable similarity with the vertebrate neural tube, which is patterned by Sonic Hh. Altogether, we show that differentiating neurons can regulate the neuronal diversity of their distant target fields through morphogen gradients.