Modulation of Prdm9-controlled meiotic chromosome asynapsis overrides hybrid sterility in mice

  1. Sona Gregorova
  2. Vaclav Gergelits  Is a corresponding author
  3. Irena Chvatalova
  4. Tanmoy Bhattacharyya
  5. Barbora Valiskova
  6. Vladana Fotopulosova
  7. Petr Jansa
  8. Diana Wiatrowska
  9. Jiri Forejt  Is a corresponding author
  1. Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Czech Republic

Abstract

Hybrid sterility is one of the reproductive isolation mechanisms leading to speciation. Prdm9, the only known vertebrate hybrid sterility gene, causes failure of meiotic chromosome synapsis and infertility in male hybrids between two mouse subspecies. But within species Prdm9 determines the sites of programmed DNA double-strand breaks and meiotic recombination hotspots. To investigate the relation between Prdm9-controlled meiotic arrest and asynapsis, we inserted random stretches of consubspecific homology on several autosomal pairs in sterile hybrids and analyzed their ability to form synaptonemal complexes and rescue male fertility. Twenty-seven or more Mb of consubspecific (belonging to the same subspecies) homology fully restored synapsis in a given autosomal pair and we predicted that two or more DSBs within symmetric hotspots per chromosome are necessary for successful meiosis. We hypothesize that impaired recombination between evolutionarily diverged chromosomes could function as one of the mechanisms of hybrid sterility occurring in various sexually reproducing species.

Article and author information

Author details

  1. Sona Gregorova

    Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  2. Vaclav Gergelits

    Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
    For correspondence
    vaclav.gergelits@img.cas.cz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5178-8833
  3. Irena Chvatalova

    Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Tanmoy Bhattacharyya

    Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Barbora Valiskova

    Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  6. Vladana Fotopulosova

    Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  7. Petr Jansa

    Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  8. Diana Wiatrowska

    Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  9. Jiri Forejt

    Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
    For correspondence
    jforejt@img.cas.cz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2793-3623

Funding

Czech Science Fundation (13-08078S)

  • Jiri Forejt

Charles University Grant Agency of The Czech Republic (435416)

  • Vaclav Gergelits
  • Barbora Valiskova

Ministry of Education, Youth and Sports of The Czech Republic (LQ1604 project of the NSPII)

  • Jiri Forejt

Charles University Grant Agency of The Czech Republic (17115)

  • Vaclav Gergelits
  • Barbora Valiskova

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The mice were maintained at the Institute of Molecular Genetics in Prague and Vestec, Czech Republic. The project was approved by the Animal Care and use Committee of the Institute of Molecular Genetics AS CR, protocol No 141/2012. The principles of laboratory animal care Czech Act No. 246/1992 Sb., compatible with EU Council Directive 86/609/EEC and Apendix of the Council of Europe Convention ETS, were observed.

Copyright

© 2018, Gregorova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,379
    views
  • 385
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sona Gregorova
  2. Vaclav Gergelits
  3. Irena Chvatalova
  4. Tanmoy Bhattacharyya
  5. Barbora Valiskova
  6. Vladana Fotopulosova
  7. Petr Jansa
  8. Diana Wiatrowska
  9. Jiri Forejt
(2018)
Modulation of Prdm9-controlled meiotic chromosome asynapsis overrides hybrid sterility in mice
eLife 7:e34282.
https://doi.org/10.7554/eLife.34282

Share this article

https://doi.org/10.7554/eLife.34282

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.