Coevolution-based inference of amino acid interactions underlying protein function

  1. Rama Ranganathan  Is a corresponding author
  2. Victor H Salinas
  1. University of Texas Southwestern Medical Center, United States

Abstract

Protein function arises from a poorly understood pattern of energetic interactions between amino acid residues. Sequence-based strategies for deducing this pattern have been proposed, but lack of benchmark data has limited experimental verification. Here, we extend deep-mutation technologies to enable measurement of many thousands of pairwise amino acid couplings in several homologs of a protein family - a deep coupling scan (DCS). The data show that cooperative interactions between residues are loaded in a sparse, evolutionarily conserved, spatially contiguous network of amino acids. The pattern of amino acid coupling is quantitatively captured in the coevolution of amino acid positions, especially as indicated by the statistical coupling analysis (SCA), providing experimental confirmation of the key tenets of this method. This work exposes the collective nature of physical constraints on protein function and clarifies its link with sequence analysis, enabling a general practical approach for understanding the structural basis for protein function.

Data availability

Mutation data have been deposited in the Dryad database under accession code doi:10.5061/dryad.gk4m1

The following data sets were generated

Article and author information

Author details

  1. Rama Ranganathan

    Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    ranganathanr@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5463-8956
  2. Victor H Salinas

    Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (RO1GM123456)

  • Victor H Salinas

Welch Foundation (I-1366)

  • Rama Ranganathan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Ranganathan & Salinas

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,238
    views
  • 1,395
    downloads
  • 113
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rama Ranganathan
  2. Victor H Salinas
(2018)
Coevolution-based inference of amino acid interactions underlying protein function
eLife 7:e34300.
https://doi.org/10.7554/eLife.34300

Share this article

https://doi.org/10.7554/eLife.34300

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Senem Ntourmas, Martin Sachs ... Dominic B Bernkopf
    Research Article

    Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.

    1. Biochemistry and Chemical Biology
    Bikash Adhikari, Katharina Schneider ... Elmar Wolf
    Research Article

    The development of proteolysis targeting chimeras (PROTACs), which induce the degradation of target proteins by bringing them into proximity with cellular E3 ubiquitin ligases, has revolutionized drug development. While the human genome encodes more than 600 different E3 ligases, current PROTACs use only a handful of them, drastically limiting their full potential. Furthermore, many PROTAC development campaigns fail because the selected E3 ligase candidates are unable to induce degradation of the particular target of interest. As more and more ligands for novel E3 ligases are discovered, the chemical effort to identify the best E3 ligase for a given target is exploding. Therefore, a genetic system to identify degradation-causing E3 ligases and suitable target/E3 ligase pairs is urgently needed. Here, we used the well-established dimerization of the FKBP12 protein and FRB domain by rapamycin to bring the target protein WDR5 into proximity with candidate E3 ligases. Strikingly, this rapamycin-induced proximity assay (RiPA) revealed that VHL, but not Cereblon, is able to induce WDR5 degradation - a finding previously made by PROTACs, demonstrating its predictive power. By optimizing the steric arrangement of all components and fusing the target protein with a minimal luciferase, RiPA can identify the ideal E3 for any target protein of interest in living cells, significantly reducing and focusing the chemical effort in the early stages of PROTAC development.