Mapping mutational effects along the evolutionary landscape of HIV envelope

  1. Hugh K Haddox
  2. Adam S Dingens
  3. Sarah K Hilton
  4. Julie Overbaugh
  5. Jesse D Bloom  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States

Abstract

The immediate evolutionary space accessible to HIV is largely determined by how single amino-acid mutations affect fitness. These mutational effects can shift as the virus evolves. However, the prevalence of such shifts in mutational effects remains unclear. Here we quantify the effects on viral growth of all amino-acid mutations to two HIV envelope (Env) proteins that differ at >100 residues. Most mutations similarly affect both Envs, but the amino-acid preferences of a minority of sites have clearly shifted. These shifted sites usually prefer a specific amino acid in one Env, but tolerate many amino acids in the other. Surprisingly, shifts are only slightly enriched at sites that have substituted between the Envs-and many occur at residues that do not even contact substitutions. Therefore, long-range epistasis can unpredictably shift Env's mutational tolerance during HIV evolution, although the amino-acid preferences of most sites are conserved between moderately diverged viral strains.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Hugh K Haddox

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adam S Dingens

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarah K Hilton

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Julie Overbaugh

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jesse D Bloom

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    jbloom@fredhutch.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1267-3408

Funding

National Institutes of Health (R01-AI127893)

  • Jesse D Bloom

National Science Foundation (DGE-1256082)

  • Adam S Dingens

Howard Hughes Medical Institute (Faculty Scholar Grant)

  • Jesse D Bloom

Simons Foundation (Faculty Scholar Grant)

  • Jesse D Bloom

Collaboration for AIDS Vaccine Discovery (OPP1111923)

  • Jesse D Bloom

National Institutes of Health (DP1-DA039543)

  • Julie Overbaugh

National Institutes of Health (T32GM007270)

  • Hugh K Haddox

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arup K Chakraborty, Massachusetts Institute of Technology, United States

Version history

  1. Received: December 17, 2017
  2. Accepted: March 15, 2018
  3. Accepted Manuscript published: March 28, 2018 (version 1)
  4. Version of Record published: April 20, 2018 (version 2)
  5. Version of Record updated: May 8, 2018 (version 3)

Copyright

© 2018, Haddox et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,187
    views
  • 664
    downloads
  • 95
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hugh K Haddox
  2. Adam S Dingens
  3. Sarah K Hilton
  4. Julie Overbaugh
  5. Jesse D Bloom
(2018)
Mapping mutational effects along the evolutionary landscape of HIV envelope
eLife 7:e34420.
https://doi.org/10.7554/eLife.34420

Share this article

https://doi.org/10.7554/eLife.34420

Further reading

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Foteini Karapanagioti, Úlfur Águst Atlason ... Sebastian Obermaier
    Research Article

    The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Yannick Schäfer, Katja Palitzsch ... Jaanus Suurväli
    Research Article Updated

    Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations, we identified a total of 1513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.