Epigenetic drift of H3K27me3 in aging links glycolysis to healthy longevity in Drosophila

  1. Zaijun Ma
  2. Hui Wang
  3. Yuping Cai
  4. Han Wang
  5. Kongyan Niu
  6. Xiaofen Wu
  7. Huanhuan Ma
  8. Yun Yang
  9. Wenhua Tong
  10. Feng Liu
  11. Zhandong Liu
  12. Yaoyang Zhang
  13. Rui Liu
  14. Zheng-Jiang Zhu  Is a corresponding author
  15. Nan Liu  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. Shanghai Jiao Tong University School of Medicine, China
  3. Texas Children's Hospital, United States
  4. Singlera Genomics, China

Abstract

Epigenetic alteration has been implicated in aging. However, the mechanism by which epigenetic change impacts aging remains to be understood. H3K27me3, a highly conserved histone modification signifying transcriptional repression, is marked and maintained by Polycomb Repressive Complexes (PRCs). Here, we explore the mechanism by which age-modulated increase of H3K27me3 impacts adult lifespan. Using Drosophila, we reveal that aging leads to loss of fidelity in epigenetic marking and drift of H3K27me3 and consequential reduction in the expression of glycolytic genes with negative effects on energy production and redox state. We show that a reduction of H3K27me3 by PRCs-deficiency promotes glycolysis and healthy lifespan. While perturbing glycolysis diminishes the pro-lifespan benefits mediated by PRCs-deficiency, transgenic increase of glycolytic genes in wild-type animals extends longevity. Together, we propose that epigenetic drift of H3K27me3 is one of the molecular mechanisms that contribute to aging and that stimulation of glycolysis promotes metabolic health and longevity.

Data availability

The raw data files of sequencing experiments have been deposited in the NCBI Gene Expression Omnibus, as well as the normalized read density profiles of ChIP-seq and differential expression results from DESeq of RNA-seq reported in this paper. The accession number is GEO: GSE96654.

The following data sets were generated

Article and author information

Author details

  1. Zaijun Ma

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  2. Hui Wang

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3522-0164
  3. Yuping Cai

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  4. Han Wang

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  5. Kongyan Niu

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  6. Xiaofen Wu

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  7. Huanhuan Ma

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  8. Yun Yang

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  9. Wenhua Tong

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  10. Feng Liu

    State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    No competing interests declared.
  11. Zhandong Liu

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
  12. Yaoyang Zhang

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  13. Rui Liu

    Singlera Genomics, Shanghai, China
    Competing interests
    Rui Liu, is affiliated with Singlera Genomics, a company providing customized next generation sequencing services. The author has no financial interests to declare.
  14. Zheng-Jiang Zhu

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    jiangzhu@sioc.ac.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3272-3567
  15. Nan Liu

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    liunan@sioc.ac.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7384-0794

Funding

National Program on Key Research Projects of China (2016YFA0501900)

  • Nan Liu

National Science Foundation of China (31371326)

  • Nan Liu

National Science Foundation of China (31671428)

  • Yaoyang Zhang

National Science Foundation of China (31500665)

  • Yaoyang Zhang

National Science Foundation of China (31530041)

  • Yaoyang Zhang

National Science Foundation of China (81770143)

  • Feng Liu

National Institutes of Health (GM120033)

  • Zhandong Liu

National Science Foundation (DMS-1263932)

  • Zhandong Liu

Cancer Prevention and Research Institute of Texas (RP170387)

  • Zhandong Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Ma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,703
    views
  • 1,190
    downloads
  • 102
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zaijun Ma
  2. Hui Wang
  3. Yuping Cai
  4. Han Wang
  5. Kongyan Niu
  6. Xiaofen Wu
  7. Huanhuan Ma
  8. Yun Yang
  9. Wenhua Tong
  10. Feng Liu
  11. Zhandong Liu
  12. Yaoyang Zhang
  13. Rui Liu
  14. Zheng-Jiang Zhu
  15. Nan Liu
(2018)
Epigenetic drift of H3K27me3 in aging links glycolysis to healthy longevity in Drosophila
eLife 7:e35368.
https://doi.org/10.7554/eLife.35368

Share this article

https://doi.org/10.7554/eLife.35368

Further reading

    1. Cell Biology
    Satoshi Ninagawa, Masaki Matsuo ... Kazutoshi Mori
    Research Advance

    How the fate (folding versus degradation) of glycoproteins is determined in the endoplasmic reticulum (ER) is an intriguing question. Monoglucosylated glycoproteins are recognized by lectin chaperones to facilitate their folding, whereas glycoproteins exposing well-trimmed mannoses are subjected to glycoprotein ER-associated degradation (gpERAD); we have elucidated how mannoses are sequentially trimmed by EDEM family members (George et al., 2020; 2021 eLife). Although reglucosylation by UGGT was previously reported to have no effect on substrate degradation, here we directly tested this notion using cells with genetically disrupted UGGT1/2. Strikingly, the results showed that UGGT1 delayed the degradation of misfolded substrates and unstable glycoproteins including ATF6α. An experiment with a point mutant of UGGT1 indicated that the glucosylation activity of UGGT1 was required for the inhibition of early glycoprotein degradation. These and overexpression-based competition experiments suggested that the fate of glycoproteins is determined by a tug-of-war between structure formation by UGGT1 and degradation by EDEMs. We further demonstrated the physiological importance of UGGT1, since ATF6α cannot function properly without UGGT1. Thus, our work strongly suggests that UGGT1 is a central factor in ER protein quality control via the regulation of both glycoprotein folding and degradation.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Senem Ntourmas, Martin Sachs ... Dominic B Bernkopf
    Research Article

    Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.