Epigenetic drift of H3K27me3 in aging links glycolysis to healthy longevity in Drosophila

  1. Zaijun Ma
  2. Hui Wang
  3. Yuping Cai
  4. Han Wang
  5. Kongyan Niu
  6. Xiaofen Wu
  7. Huanhuan Ma
  8. Yun Yang
  9. Wenhua Tong
  10. Feng Liu
  11. Zhandong Liu
  12. Yaoyang Zhang
  13. Rui Liu
  14. Zheng-Jiang Zhu  Is a corresponding author
  15. Nan Liu  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. Shanghai Jiao Tong University School of Medicine, China
  3. Texas Children's Hospital, United States
  4. Singlera Genomics, China

Abstract

Epigenetic alteration has been implicated in aging. However, the mechanism by which epigenetic change impacts aging remains to be understood. H3K27me3, a highly conserved histone modification signifying transcriptional repression, is marked and maintained by Polycomb Repressive Complexes (PRCs). Here, we explore the mechanism by which age-modulated increase of H3K27me3 impacts adult lifespan. Using Drosophila, we reveal that aging leads to loss of fidelity in epigenetic marking and drift of H3K27me3 and consequential reduction in the expression of glycolytic genes with negative effects on energy production and redox state. We show that a reduction of H3K27me3 by PRCs-deficiency promotes glycolysis and healthy lifespan. While perturbing glycolysis diminishes the pro-lifespan benefits mediated by PRCs-deficiency, transgenic increase of glycolytic genes in wild-type animals extends longevity. Together, we propose that epigenetic drift of H3K27me3 is one of the molecular mechanisms that contribute to aging and that stimulation of glycolysis promotes metabolic health and longevity.

Data availability

The raw data files of sequencing experiments have been deposited in the NCBI Gene Expression Omnibus, as well as the normalized read density profiles of ChIP-seq and differential expression results from DESeq of RNA-seq reported in this paper. The accession number is GEO: GSE96654.

The following data sets were generated

Article and author information

Author details

  1. Zaijun Ma

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  2. Hui Wang

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3522-0164
  3. Yuping Cai

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  4. Han Wang

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  5. Kongyan Niu

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  6. Xiaofen Wu

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  7. Huanhuan Ma

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  8. Yun Yang

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  9. Wenhua Tong

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  10. Feng Liu

    State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
    Competing interests
    No competing interests declared.
  11. Zhandong Liu

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
  12. Yaoyang Zhang

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    No competing interests declared.
  13. Rui Liu

    Singlera Genomics, Shanghai, China
    Competing interests
    Rui Liu, is affiliated with Singlera Genomics, a company providing customized next generation sequencing services. The author has no financial interests to declare.
  14. Zheng-Jiang Zhu

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    jiangzhu@sioc.ac.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3272-3567
  15. Nan Liu

    Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
    For correspondence
    liunan@sioc.ac.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7384-0794

Funding

National Program on Key Research Projects of China (2016YFA0501900)

  • Nan Liu

National Science Foundation of China (31371326)

  • Nan Liu

National Science Foundation of China (31671428)

  • Yaoyang Zhang

National Science Foundation of China (31500665)

  • Yaoyang Zhang

National Science Foundation of China (31530041)

  • Yaoyang Zhang

National Science Foundation of China (81770143)

  • Feng Liu

National Institutes of Health (GM120033)

  • Zhandong Liu

National Science Foundation (DMS-1263932)

  • Zhandong Liu

Cancer Prevention and Research Institute of Texas (RP170387)

  • Zhandong Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matt Kaeberlein, University of Washington, United States

Version history

  1. Received: January 24, 2018
  2. Accepted: April 23, 2018
  3. Accepted Manuscript published: May 29, 2018 (version 1)
  4. Version of Record published: June 7, 2018 (version 2)
  5. Version of Record updated: October 11, 2018 (version 3)

Copyright

© 2018, Ma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,269
    Page views
  • 1,157
    Downloads
  • 84
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zaijun Ma
  2. Hui Wang
  3. Yuping Cai
  4. Han Wang
  5. Kongyan Niu
  6. Xiaofen Wu
  7. Huanhuan Ma
  8. Yun Yang
  9. Wenhua Tong
  10. Feng Liu
  11. Zhandong Liu
  12. Yaoyang Zhang
  13. Rui Liu
  14. Zheng-Jiang Zhu
  15. Nan Liu
(2018)
Epigenetic drift of H3K27me3 in aging links glycolysis to healthy longevity in Drosophila
eLife 7:e35368.
https://doi.org/10.7554/eLife.35368

Share this article

https://doi.org/10.7554/eLife.35368

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.