Multisite dependency of an E3 ligase controls monoubiquitylation-dependent cell fate decisions

  1. Achim Werner
  2. Regina Baur
  3. Nia Teerikorpi
  4. Deniz U Kaya
  5. Michael Rape  Is a corresponding author
  1. National Institutes of Dental and Craniofacial Research, United States
  2. University of California Berkeley, United States

Abstract

Metazoan development depends on tightly regulated gene expression programs that instruct progenitor cells to adopt specialized fates. Recent work found that posttranslational modifications, such as monoubiquitylation, can determine cell fate also independently of effects on transcription, yet how monoubiquitylation is implemented during development is poorly understood. Here, we have identified a regulatory circuit that controls monoubiquitylation-dependent neural crest specification by the E3 ligase CUL3 and its substrate adaptor KBTBD8. We found that CUL3KBTBD8 monoubiquitylates its essential targets only after these have been phosphorylated in multiple motifs by CK2, a kinase whose levels gradually increase during embryogenesis. Its dependency on multisite phosphorylation allows CUL3KBTBD8 to convert the slow rise in embryonic CK2 into decisive recognition of ubiquitylation substrates, which in turn is essential for neural crest specification. We conclude that multisite dependency of an E3 ligase provides a powerful mechanism for switch-like cell fate transitions controlled by monoubiquitylation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Achim Werner

    NIDCR, National Institutes of Dental and Craniofacial Research, Bethesda, United States
    Competing interests
    No competing interests declared.
  2. Regina Baur

    Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5104-4888
  3. Nia Teerikorpi

    Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Deniz U Kaya

    Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4767-8655
  5. Michael Rape

    Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, United States
    For correspondence
    mrape@berkeley.edu
    Competing interests
    Michael Rape, Reviewing Editor, eLife. MR is founder and consultant to Nurix, a biotechnology company acting in the ubiquitin space. The work at Nurix does not overlap with the current study..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4849-6343

Funding

Howard Hughes Medical Institute

  • Michael Rape
  • Regina Baur

National Institutes of Health (K99DE025314)

  • Achim Werner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Rape et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,829
    views
  • 461
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Achim Werner
  2. Regina Baur
  3. Nia Teerikorpi
  4. Deniz U Kaya
  5. Michael Rape
(2018)
Multisite dependency of an E3 ligase controls monoubiquitylation-dependent cell fate decisions
eLife 7:e35407.
https://doi.org/10.7554/eLife.35407

Share this article

https://doi.org/10.7554/eLife.35407

Further reading

    1. Biochemistry and Chemical Biology
    Emily L Dearlove, Chatrin Chatrin ... Danny T Huang
    Research Article

    Ubiquitination typically involves covalent linking of ubiquitin (Ub) to a lysine residue on a protein substrate. Recently, new facets of this process have emerged, including Ub modification of non-proteinaceous substrates like ADP-ribose by the DELTEX E3 ligase family. Here, we show that the DELTEX family member DTX3L expands this non-proteinaceous substrate repertoire to include single-stranded DNA and RNA. Although the N-terminal region of DTX3L contains single-stranded nucleic acid binding domains and motifs, the minimal catalytically competent fragment comprises the C-terminal RING and DTC domains (RD). DTX3L-RD catalyses ubiquitination of the 3’-end of single-stranded DNA and RNA, as well as double-stranded DNA with a 3’ overhang of two or more nucleotides. This modification is reversibly cleaved by deubiquitinases. NMR and biochemical analyses reveal that the DTC domain binds single-stranded DNA and facilitates the catalysis of Ub transfer from RING-bound E2-conjugated Ub. Our study unveils the direct ubiquitination of nucleic acids by DTX3L, laying the groundwork for understanding its functional implications.

    1. Biochemistry and Chemical Biology
    Jaskamaljot Kaur Banwait, Liana Islam, Aaron L Lucius
    Research Article

    Escherichia coli ClpB and Saccharomyces cerevisiae Hsp104 are AAA+ motor proteins essential for proteome maintenance and thermal tolerance. ClpB and Hsp104 have been proposed to extract a polypeptide from an aggregate and processively translocate the chain through the axial channel of its hexameric ring structure. However, the mechanism of translocation and if this reaction is processive remains disputed. We reported that Hsp104 and ClpB are non-processive on unfolded model substrates. Others have reported that ClpB is able to processively translocate a mechanically unfolded polypeptide chain at rates over 240 amino acids (aa) per second. Here, we report the development of a single turnover stopped-flow fluorescence strategy that reports on processive protein unfolding catalyzed by ClpB. We show that when translocation catalyzed by ClpB is challenged by stably folded protein structure, the motor enzymatically unfolds the substrate at a rate of ~0.9 aa s−1 with a kinetic step-size of ~60 amino acids at sub-saturating [ATP]. We reconcile the apparent controversy by defining enzyme catalyzed protein unfolding and translocation as two distinct reactions with different mechanisms of action. We propose a model where slow unfolding followed by fast translocation represents an important mechanistic feature that allows the motor to rapidly translocate up to the next folded region or rapidly dissociate if no additional fold is encountered.