Single-color, ratiometric biosensors for detecting signaling activities in live cells

  1. Brian L Ross
  2. Brian Tenner
  3. Michele L Markwardt
  4. Adam Zviman
  5. Guoli Shi
  6. Jaclyn P Kerr
  7. Nicole E Snell
  8. Jennifer J McFarland
  9. Joseph R Mauban
  10. Christopher W Ward
  11. Megan A Rizzo
  12. Jin Zhang  Is a corresponding author
  1. University of California, San Diego, United States
  2. University of Maryland, United States

Abstract

Genetically encoded fluorescent biosensors have revolutionized the study of signal transduction by enabling the real-time tracking of signaling activities in live cells. Investigating the interaction between signaling networks has become increasingly important to understanding complex cellular phenomena, necessitating an update of the biosensor toolkit to allow monitoring and perturbing multiple activities simultaneously in the same cell. We therefore developed a new class of fluorescent biosensors based on homo-FRET, deemed FLuorescence Anisotropy REporters (FLAREs), which combine the multiplexing ability of single-color sensors with a quantitative, ratiometric readout. Using an array of color variants, we were able to demonstrate multiplexed imaging of three activity reporters simultaneously in the same cell. We further demonstrate the compatibility of FLAREs for use with optogenetic tools as well as intravital two-photon imaging.

Data availability

Source data have been provided for Figures 1 to 4.

Article and author information

Author details

  1. Brian L Ross

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9020-627X
  2. Brian Tenner

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michele L Markwardt

    Department of Physiology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Adam Zviman

    Department of Physiology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Guoli Shi

    Department of Orthopaedics, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jaclyn P Kerr

    Department of Orthopaedics, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Nicole E Snell

    Department of Physiology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jennifer J McFarland

    Department of Physiology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Joseph R Mauban

    Department of Physiology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Christopher W Ward

    Department of Orthopaedics, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Megan A Rizzo

    Department of Physiology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Jin Zhang

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    For correspondence
    jzhang32@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7145-7823

Funding

National Institutes of Health (R35 CA197622)

  • Jin Zhang

National Institutes of Health (R01 DK073368)

  • Jin Zhang

National Institutes of Health (R01 MH111516)

  • Jin Zhang

National Institutes of Health (R01 DK077140)

  • Megan A Rizzo

National Institutes of Health (R01 HL122827)

  • Megan A Rizzo

National Institutes of Health (R01 MH111527)

  • Megan A Rizzo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All work involving mice was performed in accordance and recommendations of the NIH's Guide for the Care and Use of Laboratory Animals. Work was performed under protocols approved by the University of Maryland, Baltimore's Institutional Animal Care and Use Committee (protocol # 1213012). Procedures were performed under isoflurane anesthesia to minimize suffering.

Reviewing Editor

  1. Taekjip Ha, Johns Hopkins University School of Medicine, United States

Publication history

  1. Received: January 30, 2018
  2. Accepted: June 16, 2018
  3. Accepted Manuscript published: July 3, 2018 (version 1)
  4. Version of Record published: July 9, 2018 (version 2)
  5. Version of Record updated: May 24, 2019 (version 3)

Copyright

© 2018, Ross et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,162
    Page views
  • 802
    Downloads
  • 35
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian L Ross
  2. Brian Tenner
  3. Michele L Markwardt
  4. Adam Zviman
  5. Guoli Shi
  6. Jaclyn P Kerr
  7. Nicole E Snell
  8. Jennifer J McFarland
  9. Joseph R Mauban
  10. Christopher W Ward
  11. Megan A Rizzo
  12. Jin Zhang
(2018)
Single-color, ratiometric biosensors for detecting signaling activities in live cells
eLife 7:e35458.
https://doi.org/10.7554/eLife.35458

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Rajesh Sharma et al.
    Research Article

    Cyclic GMP-dependent protein kinases (PKGs) are key mediators of the nitric oxide/cGMP signaling pathway that regulates biological functions as diverse as smooth muscle contraction, cardiac function, and axon guidance. Understanding how cGMP differentially triggers mammalian PKG isoforms could lead to new therapeutics that inhibit or activate PKGs, complementing drugs that target nitric oxide synthases and cyclic nucleotide phosphodiesterases in this signaling axis. Alternate splicing of PRKG1 transcripts confers distinct leucine zippers, linkers, and auto-inhibitory pseudo-substrate sequences to PKG Iα and Iβ that result in isoform-specific activation properties, but the mechanism of enzyme auto-inhibition and its alleviation by cGMP is not well understood. Here we present a crystal structure of PKG Iβ in which the auto-inhibitory sequence and the cyclic nucleotide binding domains are bound to the catalytic domain, providing a snapshot of the auto-inhibited state. Specific contacts between the PKG Iβ auto-inhibitory sequence and the enzyme active site help explain isoform-specific activation constants and the effects of phosphorylation in the linker. We also present a crystal structure of a PKG I cyclic nucleotide binding domain with an activating mutation linked to Thoracic Aortic Aneurysms and Dissections. Similarity of this structure to wild type cGMP-bound domains and differences with the auto-inhibited enzyme provide a mechanistic basis for constitutive activation. We show that PKG Iβ auto-inhibition is mediated by contacts within each monomer of the native full-length dimeric protein, and using the available structural and biochemical data we develop a model for the regulation and cooperative activation of PKGs.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yitong Li et al.
    Research Article

    Protein phosphatase 2A (PP2A) holoenzymes target broad substrates by recognizing short motifs via regulatory subunits. PP2A methylesterase 1 (PME-1) is a cancer-promoting enzyme and undergoes methylesterase activation upon binding to the PP2A core enzyme. Here we showed that PME-1 readily demethylates different families of PP2A holoenzymes and blocks substrate recognition in vitro. The high-resolution cryo-EM structure of a PP2A-B56 holoenzyme-PME-1 complex reveals that PME-1 disordered regions, including a substrate-mimicking motif, tether to the B56 regulatory subunit at remote sites. They occupy the holoenzyme substrate-binding groove and allow large structural shifts in both holoenzyme and PME-1 to enable multi-partite contacts at structured cores to activate the methylesterase. B56-interface mutations selectively block PME-1 activity toward PP2A-B56 holoenzymes and affect the methylation of a fraction of total cellular PP2A. The B56-interface mutations allow us to uncover B56-specific PME-1 functions in p53 signaling. Our studies reveal multiple mechanisms of PME-1 in suppressing holoenzyme functions and versatile PME-1 activities derived from coupling substrate-mimicking motifs to dynamic structured cores.