Single-color, ratiometric biosensors for detecting signaling activities in live cells

  1. Brian L Ross
  2. Brian Tenner
  3. Michele L Markwardt
  4. Adam Zviman
  5. Guoli Shi
  6. Jaclyn P Kerr
  7. Nicole E Snell
  8. Jennifer J McFarland
  9. Joseph R Mauban
  10. Christopher W Ward
  11. Megan A Rizzo
  12. Jin Zhang  Is a corresponding author
  1. University of California, San Diego, United States
  2. University of Maryland, United States

Abstract

Genetically encoded fluorescent biosensors have revolutionized the study of signal transduction by enabling the real-time tracking of signaling activities in live cells. Investigating the interaction between signaling networks has become increasingly important to understanding complex cellular phenomena, necessitating an update of the biosensor toolkit to allow monitoring and perturbing multiple activities simultaneously in the same cell. We therefore developed a new class of fluorescent biosensors based on homo-FRET, deemed FLuorescence Anisotropy REporters (FLAREs), which combine the multiplexing ability of single-color sensors with a quantitative, ratiometric readout. Using an array of color variants, we were able to demonstrate multiplexed imaging of three activity reporters simultaneously in the same cell. We further demonstrate the compatibility of FLAREs for use with optogenetic tools as well as intravital two-photon imaging.

Data availability

Source data have been provided for Figures 1 to 4.

Article and author information

Author details

  1. Brian L Ross

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9020-627X
  2. Brian Tenner

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Michele L Markwardt

    Department of Physiology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Adam Zviman

    Department of Physiology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Guoli Shi

    Department of Orthopaedics, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jaclyn P Kerr

    Department of Orthopaedics, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Nicole E Snell

    Department of Physiology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jennifer J McFarland

    Department of Physiology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Joseph R Mauban

    Department of Physiology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Christopher W Ward

    Department of Orthopaedics, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Megan A Rizzo

    Department of Physiology, University of Maryland, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Jin Zhang

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    For correspondence
    jzhang32@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7145-7823

Funding

National Institutes of Health (R35 CA197622)

  • Jin Zhang

National Institutes of Health (R01 DK073368)

  • Jin Zhang

National Institutes of Health (R01 MH111516)

  • Jin Zhang

National Institutes of Health (R01 DK077140)

  • Megan A Rizzo

National Institutes of Health (R01 HL122827)

  • Megan A Rizzo

National Institutes of Health (R01 MH111527)

  • Megan A Rizzo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All work involving mice was performed in accordance and recommendations of the NIH's Guide for the Care and Use of Laboratory Animals. Work was performed under protocols approved by the University of Maryland, Baltimore's Institutional Animal Care and Use Committee (protocol # 1213012). Procedures were performed under isoflurane anesthesia to minimize suffering.

Reviewing Editor

  1. Taekjip Ha, Johns Hopkins University School of Medicine, United States

Publication history

  1. Received: January 30, 2018
  2. Accepted: June 16, 2018
  3. Accepted Manuscript published: July 3, 2018 (version 1)
  4. Version of Record published: July 9, 2018 (version 2)
  5. Version of Record updated: May 24, 2019 (version 3)

Copyright

© 2018, Ross et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,320
    Page views
  • 825
    Downloads
  • 42
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian L Ross
  2. Brian Tenner
  3. Michele L Markwardt
  4. Adam Zviman
  5. Guoli Shi
  6. Jaclyn P Kerr
  7. Nicole E Snell
  8. Jennifer J McFarland
  9. Joseph R Mauban
  10. Christopher W Ward
  11. Megan A Rizzo
  12. Jin Zhang
(2018)
Single-color, ratiometric biosensors for detecting signaling activities in live cells
eLife 7:e35458.
https://doi.org/10.7554/eLife.35458
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Sebastian Strauss, Julia Acker ... Ralf Jungmann
    Research Article

    Rotaviruses transcribe eleven distinct RNAs that must be co-packaged prior to their replication to make an infectious virion. During infection, nontranslating rotavirus transcripts accumulate in cytoplasmic protein-RNA granules known as viroplasms that support segmented genome assembly and replication via a poorly understood mechanism. Here we analysed the RV transcriptome by combining DNA-barcoded smFISH of rotavirus-infected cells. Rotavirus RNA stoichiometry in viroplasms appears to be distinct from the cytoplasmic transcript distribution, with the largest transcript being the most enriched in viroplasms, suggesting a selective RNA enrichment mechanism. While all eleven types of transcripts accumulate in viroplasms, their stoichiometry significantly varied between individual viroplasms. Accumulation of transcripts requires the presence of 3' untranslated terminal regions and viroplasmic localisation of the viral polymerase VP1, consistent with the observed lack of polyadenylated transcripts in viroplasms. Our observations reveal similarities between viroplasms and other cytoplasmic RNP granules and identify viroplasmic proteins as drivers of viral RNA assembly during viroplasm formation.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Anna Durner, Ellis Durner, Annette Nicke
    Research Article Updated

    The large intracellular C-terminus of the pro-inflammatory P2X7 ion channel receptor (P2X7R) is associated with diverse P2X7R-specific functions. Cryo-EM structures of the closed and ATP-bound open full-length P2X7R recently identified a membrane-associated anchoring domain, an open-state stabilizing “cap” domain, and a globular “ballast domain” containing GTP/GDP and dinuclear Zn2+-binding sites with unknown functions. To investigate protein dynamics during channel activation, we improved incorporation of the environment-sensitive fluorescent unnatural amino acid L-3-(6-acetylnaphthalen-2-ylamino)–2-aminopropanoic acid (ANAP) into Xenopus laevis oocyte-expressed P2X7Rs and performed voltage clamp fluorometry. While we confirmed predicted conformational changes within the extracellular and the transmembrane domains, only 3 out of 41 mutants containing ANAP in the C-terminal domain resulted in ATP-induced fluorescence changes. We conclude that the ballast domain functions rather independently from the extracellular ATP binding domain and might require activation by additional ligands and/or protein interactions. Novel tools to study these are presented.