1. Cell Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Lateral interactions between protofilaments of the bacterial tubulin homolog FtsZ are essential for cell division

  1. Fenghui Guan
  2. Jiayu Yu
  3. Jie Yu
  4. Yang Liu
  5. Ying Li
  6. Xin-Hua Feng
  7. Kerwyn Casey Huang
  8. Zengyi Chang  Is a corresponding author
  9. Sheng Ye  Is a corresponding author
  1. Zhejiang University, China
  2. Peking University, China
  3. Stanford University, United States
Research Article
  • Cited 18
  • Views 2,612
  • Annotations
Cite this article as: eLife 2018;7:e35578 doi: 10.7554/eLife.35578

Abstract

The prokaryotic tubulin homolog FtsZ polymerizes into protofilaments, which further assemble into higher-order structures at future division sites to form the Z-ring, a dynamic structure essential for bacterial cell division. The precise nature of interactions between FtsZ protofilaments that organize the Z-ring and their physiological significance remain enigmatic. In this study, we solved two crystallographic structures of a pair of FtsZ protofilaments,and demonstrated that they assemble in an antiparallel manner through the formation of two different inter-protofilament lateral interfaces. Our in vivo photocrosslinking studies confirmed that such lateral interactions occur in living cells, and disruption of the lateral interactions rendered cells unable to divide. The inherently weak lateral interactions enable FtsZ protofilaments to self-organize into a dynamic Z-ring. These results have fundamental implications for our understanding of bacterial cell division and for developing antibiotics that target this key process.

Data availability

Diffraction data have been deposited in PDB under the accession code 5ZUE

The following data sets were generated

Article and author information

Author details

  1. Fenghui Guan

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jiayu Yu

    School of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Jie Yu

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yang Liu

    School of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ying Li

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xin-Hua Feng

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Kerwyn Casey Huang

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zengyi Chang

    School of Life Sciences, Peking University, Beijing, China
    For correspondence
    changzy@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  9. Sheng Ye

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    For correspondence
    sye@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9300-6257

Funding

Ministry of Science and Technology of the People's Republic of China (2016YFA0500404)

  • Sheng Ye

Ministry of Science and Technology of the People's Republic of China (2014CB910300)

  • Sheng Ye

Ministry of Science and Technology of the People's Republic of China (2012CB917300)

  • Zengyi Chang

National Natural Science Foundation of China (31525001)

  • Sheng Ye

National Natural Science Foundation of China (31430019)

  • Sheng Ye

National Natural Science Foundation of China (31670775)

  • Zengyi Chang

National Natural Science Foundation of China (31470766)

  • Zengyi Chang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Edward H Egelman, University of Virginia, United States

Publication history

  1. Received: January 31, 2018
  2. Accepted: June 10, 2018
  3. Accepted Manuscript published: June 11, 2018 (version 1)
  4. Version of Record published: July 17, 2018 (version 2)

Copyright

© 2018, Guan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,612
    Page views
  • 502
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ginto George et al.
    Research Advance

    Sequential mannose trimming of N-glycan, from M9 to M8B and then to oligosaccharides exposing the a1,6-linked mannosyl residue (M7A, M6 and M5), facilitates endoplasmic reticulum-associated degradation of misfolded glycoproteins (gpERAD). We previously showed that EDEM2 stably disulfide-bonded to the thioredoxin domain-containing protein TXNDC11 is responsible for the first step (George et al., 2020). Here, we show that EDEM3 and EDEM1 are responsible for the second step. Incubation of pyridylamine-labeled M8B with purified EDEM3 alone produced M7 (M7A and M7C), M6 and M5. EDEM1 showed a similar tendency, although much lower amounts of M6 and M5 were produced. Thus, EDEM3 is a major a1,2-mannosidase for the second step from M8B. Both EDEM3 and EDEM1 trimmed M8B from a glycoprotein efficiently. Our confirmation of the Golgi localization of MAN1B indicates that no other a1,2-mannosidase is required for gpERAD. Accordingly, we have established the entire route of oligosaccharide processing and the enzymes responsible.

    1. Cell Biology
    2. Immunology and Inflammation
    Shannon Rausser et al.
    Research Article

    Using a high-throughput mitochondrial phenotyping platform to quantify multiple mitochondrial features among molecularly-defined immune cell subtypes, we quantify the natural variation in citrate synthase, mitochondrial DNA copy number (mtDNAcn), and respiratory chain enzymatic activities in human neutrophils, monocytes, B cells, and naïve and memory T lymphocyte subtypes. In mixed peripheral blood mononuclear cells (PBMCs) from the same individuals, we show to what extent mitochondrial measures are confounded by both cell type distributions and contaminating platelets. Cell subtype-specific measures among women and men spanning 4 decades of life indicate potential age- and sex-related differences, including an age-related elevation in mtDNAcn, which are masked or blunted in mixed PBMCs. Finally, a proof-of-concept, repeated-measures study in a single individual validates cell type differences and also reveals week-to-week changes in mitochondrial activities. Larger studies are required to validate and mechanistically extend these findings. These mitochondrial phenotyping data build upon established immunometabolic differences among leukocyte sub-populations, and provide foundational quantitative knowledge to develop interpretable blood-based assays of mitochondrial health.