Human axial progenitors generate trunk neural crest cells in vitro

  1. Thomas J R Frith
  2. Ilaria Granata
  3. Matthew Wind
  4. Erin Stout
  5. Oliver Thompson
  6. Katrin Neumann
  7. Dylan Stavish
  8. Paul R Heath
  9. Daniel Ortmann
  10. James O S Hackland
  11. Konstantinos Anastassiadis
  12. Mina Gouti
  13. James Briscoe
  14. Valerie Wilson
  15. Stuart L Johnson
  16. Marysia Placzek
  17. Mario R Guarracino
  18. Peter W Andrews
  19. Anestis Tsakiridis  Is a corresponding author
  1. University of Sheffield, United Kingdom
  2. High Performance Computing and Networking Institute (ICAR), National Research Council of Italy (CNR), Italy
  3. Technische Universität Dresden, Germany
  4. University of Cambridge, United Kingdom
  5. Max Delbrück Center for Molecular Medicine, Germany
  6. The Francis Crick Institute, United Kingdom
  7. University of Edinburgh, United Kingdom

Abstract

The neural crest (NC) is a multipotent embryonic cell population that generates distinct cell types in an axial position-dependent manner. The production of NC cells from human pluripotent stem cells (hPSCs) is a valuable approach to study human NC biology. However, the origin of human trunk NC remains undefined and current in vitro differentiation strategies induce only a modest yield of trunk NC cells. Here we show that hPSC-derived axial progenitors, the posteriorly-located drivers of embryonic axis elongation, give rise to trunk NC cells and their derivatives. Moreover, we define the molecular signatures associated with the emergence of human NC cells of distinct axial identities in vitro. Collectively, our findings indicate that there are two routes toward a human post-cranial NC state: the birth of cardiac and vagal NC is facilitated by retinoic acid-induced posteriorisation of an anterior precursor whereas trunk NC arises within a pool of posterior axial progenitors.

Data availability

The microarray and RNAseq data have been deposited to GEO (GSE109267 and GSE110608).

The following data sets were generated

Article and author information

Author details

  1. Thomas J R Frith

    Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6078-5466
  2. Ilaria Granata

    Computational and Data Science Laboratory (CDS-LAB), High Performance Computing and Networking Institute (ICAR), National Research Council of Italy (CNR), Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew Wind

    Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Erin Stout

    Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Oliver Thompson

    Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Katrin Neumann

    Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Dylan Stavish

    Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Paul R Heath

    Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Daniel Ortmann

    Anne McLaren Laboratory, Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. James O S Hackland

    Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7087-9995
  11. Konstantinos Anastassiadis

    Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9814-0559
  12. Mina Gouti

    Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. James Briscoe

    Developmental Dynamics Lab, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1020-5240
  14. Valerie Wilson

    MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4182-5159
  15. Stuart L Johnson

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Marysia Placzek

    Department of Biomedical Science, University of Sheffield, Sheffied, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. Mario R Guarracino

    Computational and Data Science Laboratory (CDS-LAB), High Performance Computing and Networking Institute (ICAR), National Research Council of Italy (CNR), Napoli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  18. Peter W Andrews

    Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Anestis Tsakiridis

    Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    a.tsakiridis@sheffield.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2184-2990

Funding

Biotechnology and Biological Sciences Research Council (BB/P000444/1)

  • Mina Gouti
  • Anestis Tsakiridis

Medical Research Council (Mr/K011200/1)

  • James Briscoe
  • Valerie Wilson

Royal Society (RG160249)

  • Anestis Tsakiridis

Cancer Research UK (FC001051)

  • James Briscoe

Wellcome (FC001051)

  • James Briscoe

Seventh Framework Programme (Plurimes)

  • Konstantinos Anastassiadis
  • Peter W Andrews

Royal Society

  • Stuart L Johnson

Biotechnology and Biological Sciences Research Council (BB/J015539/1)

  • Mina Gouti
  • Anestis Tsakiridis

Medical Research Council (FC001051)

  • James Briscoe
  • Valerie Wilson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard M White, Memorial Sloan Kettering Cancer Center, United States

Publication history

  1. Received: February 8, 2018
  2. Accepted: August 9, 2018
  3. Accepted Manuscript published: August 10, 2018 (version 1)
  4. Version of Record published: August 20, 2018 (version 2)

Copyright

© 2018, Frith et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,873
    Page views
  • 839
    Downloads
  • 55
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas J R Frith
  2. Ilaria Granata
  3. Matthew Wind
  4. Erin Stout
  5. Oliver Thompson
  6. Katrin Neumann
  7. Dylan Stavish
  8. Paul R Heath
  9. Daniel Ortmann
  10. James O S Hackland
  11. Konstantinos Anastassiadis
  12. Mina Gouti
  13. James Briscoe
  14. Valerie Wilson
  15. Stuart L Johnson
  16. Marysia Placzek
  17. Mario R Guarracino
  18. Peter W Andrews
  19. Anestis Tsakiridis
(2018)
Human axial progenitors generate trunk neural crest cells in vitro
eLife 7:e35786.
https://doi.org/10.7554/eLife.35786

Further reading

    1. Developmental Biology
    2. Neuroscience
    Sweta Parab, Olivia A Card ... Ryota L Matsuoka
    Research Article Updated

    Fenestrated and blood-brain barrier (BBB)-forming endothelial cells constitute major brain capillaries, and this vascular heterogeneity is crucial for region-specific neural function and brain homeostasis. How these capillary types emerge in a brain region-specific manner and subsequently establish intra-brain vascular heterogeneity remains unclear. Here, we performed a comparative analysis of vascularization across the zebrafish choroid plexuses (CPs), circumventricular organs (CVOs), and retinal choroid, and show common angiogenic mechanisms critical for fenestrated brain capillary formation. We found that zebrafish deficient for Gpr124, Reck, or Wnt7aa exhibit severely impaired BBB angiogenesis without any apparent defect in fenestrated capillary formation in the CPs, CVOs, and retinal choroid. Conversely, genetic loss of various Vegf combinations caused significant disruptions in Wnt7/Gpr124/Reck signaling-independent vascularization of these organs. The phenotypic variation and specificity revealed heterogeneous endothelial requirements for Vegfs-dependent angiogenesis during CP and CVO vascularization, identifying unexpected interplay of Vegfc/d and Vegfa in this process. Mechanistically, expression analysis and paracrine activity-deficient vegfc mutant characterization suggest that endothelial cells and non-neuronal specialized cell types present in the CPs and CVOs are major sources of Vegfs responsible for regionally restricted angiogenic interplay. Thus, brain region-specific presentations and interplay of Vegfc/d and Vegfa control emergence of fenestrated capillaries, providing insight into the mechanisms driving intra-brain vascular heterogeneity and fenestrated vessel formation in other organs.

    1. Developmental Biology
    Arun Devotta, Hugo Juraver-Geslin ... Jean-Pierre Saint-Jeannet
    Research Article Updated

    Natriuretic peptide signaling has been implicated in a broad range of physiological processes, regulating blood volume and pressure, ventricular hypertrophy, fat metabolism, and long bone growth. Here, we describe a completely novel role for natriuretic peptide signaling in the control of neural crest (NC) and cranial placode (CP) progenitors formation. Among the components of this signaling pathway, we show that natriuretic peptide receptor 3 (Npr3) plays a pivotal role by differentially regulating two developmental programs through its dual function as clearance and signaling receptor. Using a combination of MO-based knockdowns, pharmacological inhibitors and rescue assays we demonstrate that Npr3 cooperate with guanylate cyclase natriuretic peptide receptor 1 (Npr1) and natriuretic peptides (Nppa/Nppc) to regulate NC and CP formation, pointing at a broad requirement of this signaling pathway in early embryogenesis. We propose that Npr3 acts as a clearance receptor to regulate local concentrations of natriuretic peptides for optimal cGMP production through Npr1 activation, and as a signaling receptor to control cAMP levels through inhibition of adenylyl cyclase. The intracellular modulation of these second messengers therefore participates in the segregation of NC and CP cell populations.