Ordered arrangement of dendrites within a C. elegans sensory nerve bundle

  1. Zhiqi Candice Yip
  2. Maxwell G Heiman  Is a corresponding author
  1. Boston Children's Hospital, United States

Abstract

Biological systems are organized into well-ordered structures and can evolve new patterns when perturbed. To identify principles underlying biological order, we turned to C. elegans for its simple anatomy and powerful genetics. We developed a method to quantify the arrangement of three dendrites in the main sensory nerve bundle, and found that they exhibit a stereotyped arrangement throughout larval growth. Dendrite order does not require prominent features including sensory cilia and glial junctions. In contrast, loss of the cell adhesion molecule (CAM) CDH-4/Fat-like cadherin causes dendrites to be ordered randomly, despite remaining bundled. Loss of the CAMs PTP-3/LAR or SAX-7/L1CAM causes dendrites to adopt an altered order, which becomes increasingly random as animals grow. Misexpression of SAX-7 leads to subtle but reproducible changes in dendrite order. Our results suggest that combinations of CAMs allow dendrites to self-organize into a stereotyped arrangement and can produce altered patterns when perturbed.

Data availability

A browser (http://heimanlab.com/ibb) has been developed to provide access to the extensive underlying dataset (475 fasciculated dendrite bundles consisting of three pairwise distance measurements and corresponding p-value rankings at 100 positions per bundle). Code used for data analysis is available at http://github.com/zcandiceyip/dendrite_fasciculation.

Article and author information

Author details

  1. Zhiqi Candice Yip

    Division of Genetics, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Maxwell G Heiman

    Department of Genetics, Boston Children's Hospital, Boston, United States
    For correspondence
    heiman@genetics.med.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2557-6490

Funding

National Institutes of Health (R01GM108754)

  • Maxwell G Heiman

National Science Foundation (Graduate Student Research Fellowship)

  • Zhiqi Candice Yip

Harvard University (Milton Fund)

  • Maxwell G Heiman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Yip & Heiman

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,757
    views
  • 309
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhiqi Candice Yip
  2. Maxwell G Heiman
(2018)
Ordered arrangement of dendrites within a C. elegans sensory nerve bundle
eLife 7:e35825.
https://doi.org/10.7554/eLife.35825

Share this article

https://doi.org/10.7554/eLife.35825