Functional and structural characterization of an ECF-type ABC transporter for vitamin B12

  1. Joana A Santos
  2. Stephan Rempel
  3. Sandra T M Mous
  4. Cristiane T Pereira
  5. Josy ter Beek
  6. Jan-Willem de Gier
  7. Albert Guskov  Is a corresponding author
  8. Dirk Slotboom  Is a corresponding author
  1. University of Groningen, Netherlands
  2. University of Campinas, Brazil
  3. Stockholm University, Sweden

Abstract

Vitamin B12 (cobalamin) is the most complex B-type vitamin and is synthetized exclusively in a limited number of prokaryotes. Its biologically active variants contain rare organometallic bonds, which are used by enzymes in a variety of central metabolic pathways such as L-methionine synthesis and ribonucleotide reduction. Although its biosynthesis and role as co-factor are well understood, knowledge about uptake of cobalamin by prokaryotic auxotrophs is scarce. Here, we characterize a cobalamin-specific ECF-type ABC transporter from Lactobacillus delbrueckii, ECF-CbrT, and demonstrate that it mediates the specific, ATP-dependent uptake of cobalamin. We solved the crystal structure of ECF-CbrT in an apo conformation to 3.4 Å resolution. Comparison with the ECF transporter for folate (ECF-FolT2) from the same organism, reveals how the identical ECF module adjusts to interact with the different substrate binding proteins FolT2 and CbrT. ECF-CbrT is unrelated to the well-characterized B12 transporter BtuCDF, but their biochemical features indicate functional convergence.

Data availability

Diffraction data have been deposited in PDB under the accession code 6FNP.

The following data sets were generated

Article and author information

Author details

  1. Joana A Santos

    Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8294-3405
  2. Stephan Rempel

    Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandra T M Mous

    Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Cristiane T Pereira

    Institute of Biology, University of Campinas, Sao Paulo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  5. Josy ter Beek

    Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Jan-Willem de Gier

    Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Albert Guskov

    Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
    For correspondence
    a.guskov@rug.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2340-2216
  8. Dirk Slotboom

    Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
    For correspondence
    d.j.slotboom@rug.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5804-9689

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

  • Josy ter Beek
  • Albert Guskov
  • Dirk Slotboom

European Molecular Biology Organization

  • Joana A Santos
  • Stephan Rempel

Horizon 2020 Framework Programme

  • Dirk Slotboom

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Santos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,925
    views
  • 444
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joana A Santos
  2. Stephan Rempel
  3. Sandra T M Mous
  4. Cristiane T Pereira
  5. Josy ter Beek
  6. Jan-Willem de Gier
  7. Albert Guskov
  8. Dirk Slotboom
(2018)
Functional and structural characterization of an ECF-type ABC transporter for vitamin B12
eLife 7:e35828.
https://doi.org/10.7554/eLife.35828

Share this article

https://doi.org/10.7554/eLife.35828

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.

    1. Biochemistry and Chemical Biology
    Meina He, Yongxin Tao ... Wenli Chen
    Research Article

    Copper is an essential enzyme cofactor in bacteria, but excess copper is highly toxic. Bacteria can cope with copper stress by increasing copper resistance and initiating chemorepellent response. However, it remains unclear how bacteria coordinate chemotaxis and resistance to copper. By screening proteins that interacted with the chemotaxis kinase CheA, we identified a copper-binding repressor CsoR that interacted with CheA in Pseudomonas putida. CsoR interacted with the HPT (P1), Dimer (P3), and HATPase_c (P4) domains of CheA and inhibited CheA autophosphorylation, resulting in decreased chemotaxis. The copper-binding of CsoR weakened its interaction with CheA, which relieved the inhibition of chemotaxis by CsoR. In addition, CsoR bound to the promoter of copper-resistance genes to inhibit gene expression, and copper-binding released CsoR from the promoter, leading to increased gene expression and copper resistance. P. putida cells exhibited a chemorepellent response to copper in a CheA-dependent manner, and CsoR inhibited the chemorepellent response to copper. Besides, the CheA-CsoR interaction also existed in proteins from several other bacterial species. Our results revealed a mechanism by which bacteria coordinately regulated chemotaxis and resistance to copper by CsoR.