Structural insights into the architecture and membrane interactions of the conserved COMMD proteins

  1. Michael D Healy
  2. Manuela K Hospenthal
  3. Ryan J Hall
  4. Mintu Chandra
  5. Molly Chilton
  6. Vikas Tillu
  7. Kai-En Chen
  8. Dion J Celligoi
  9. Fiona J McDonald
  10. Peter J Cullen
  11. J Shaun Lott
  12. Brett M Collins  Is a corresponding author
  13. Rajesh Ghai  Is a corresponding author
  1. University of Queensland, Australia
  2. University of Auckland, New Zealand
  3. University of Bristol, United Kingdom
  4. University of Otago, New Zealand

Abstract

The COMMD proteins are a conserved family of proteins with central roles in intracellular membrane trafficking and transcription. They form oligomeric complexes with each other and act as components of a larger assembly called the CCC complex, which is localized to endosomal compartments and mediates the transport of several transmembrane cargos. How these complexes are formed however is completely unknown. Here, we have systematically characterised the interactions between human COMMD proteins, and determined structures of COMMD proteins using X-ray crystallography and X-ray scattering to provide insights into the underlying mechanisms of homo- and heteromeric assembly. All COMMD proteins possess an a-helical N-terminal domain, and a highly conserved C‑terminal domain that forms a tightly interlocked dimeric structure responsible for COMMD-COMMD interactions. The COMM domains also bind directly to components of CCC and mediate non-specific membrane association. Overall these studies show that COMMD proteins function as obligatory dimers with conserved domain architectures.

Data availability

The raw biochemical data generated in this study is included in the supporting files. Diffraction data has been deposited in PDB and accession codes are provided in the manuscript.

The following data sets were generated
    1. Hospenthal M
    2. Celligoi D
    3. Lott JS
    (2015) The crystal structure of the n-terminal domain of COMMD9
    Publicly available at the RCSB Protein Data Bank (accession no: 4OE9).

Article and author information

Author details

  1. Michael D Healy

    Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2924-9179
  2. Manuela K Hospenthal

    School of Biological Sciences, University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  3. Ryan J Hall

    Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8543-0370
  4. Mintu Chandra

    Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Molly Chilton

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2238-9822
  6. Vikas Tillu

    Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1034-9543
  7. Kai-En Chen

    Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Dion J Celligoi

    Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  9. Fiona J McDonald

    Department of Physiology, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  10. Peter J Cullen

    MRC Centre for Synaptic Plasticity, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. J Shaun Lott

    Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  12. Brett M Collins

    Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
    For correspondence
    b.collins@imb.uq.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6070-3774
  13. Rajesh Ghai

    Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
    For correspondence
    r.ghai@uq.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0919-0934

Funding

National Health and Medical Research Council (1097185)

  • Rajesh Ghai

Australian Research Council (DP160101743)

  • Brett M Collins

Wellcome (89928)

  • Peter J Cullen

Royal Society of New Zealand

  • J Shaun Lott

National Health and Medical Research Council (APP1058734)

  • Brett M Collins

National Health and Medical Research Council (APP1061574)

  • Brett M Collins

Medical Research Council (MR/K018299/1)

  • Peter J Cullen

Wellcome (104568)

  • Peter J Cullen

Medical Research Council (MR/P018807/1)

  • Peter J Cullen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Healy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,201
    views
  • 477
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael D Healy
  2. Manuela K Hospenthal
  3. Ryan J Hall
  4. Mintu Chandra
  5. Molly Chilton
  6. Vikas Tillu
  7. Kai-En Chen
  8. Dion J Celligoi
  9. Fiona J McDonald
  10. Peter J Cullen
  11. J Shaun Lott
  12. Brett M Collins
  13. Rajesh Ghai
(2018)
Structural insights into the architecture and membrane interactions of the conserved COMMD proteins
eLife 7:e35898.
https://doi.org/10.7554/eLife.35898

Share this article

https://doi.org/10.7554/eLife.35898

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Nathaniel Paul Meyer, Tania Singh ... Diane L Barber
    Research Article

    Our understanding of the transitions of human embryonic stem cells between distinct stages of pluripotency relies predominantly on regulation by transcriptional and epigenetic programs with limited insight on the role of established morphological changes. We report remodeling of the actin cytoskeleton of human embryonic stem cells (hESCs) as they transition from primed to naïve pluripotency which includes assembly of a ring of contractile actin filaments encapsulating colonies of naïve hESCs. Activity of the Arp2/3 complex is required for the actin ring, to establish uniform cell mechanics within naïve colonies, promote nuclear translocation of the Hippo pathway effectors YAP and TAZ, and effective transition to naïve pluripotency. RNA-sequencing analysis confirms that Arp2/3 complex activity regulates Hippo signaling in hESCs, and impaired naïve pluripotency with inhibited Arp2/3 complex activity is rescued by expressing a constitutively active, nuclear-localized YAP-S127A. Moreover, expression of YAP-S127A partially restores the actin filament fence with Arp2/3 complex inhibition, suggesting that actin filament remodeling is both upstream and downstream of YAP activity. These new findings on the cell biology of hESCs reveal a mechanism for cytoskeletal dynamics coordinating cell mechanics to regulate gene expression and facilitate transitions between pluripotency states.

    1. Cell Biology
    Xiaojiao Hua, Chen Zhao ... Yan Zhou
    Research Article

    The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 – the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.