1. Cell Biology
Download icon

A Rho signaling network links microtubules to PKD controlled carrier transport to focal adhesions

Research Article
  • Cited 17
  • Views 2,115
  • Annotations
Cite this article as: eLife 2018;7:e35907 doi: 10.7554/eLife.35907

Abstract

Protein kinase D (PKD) is a family of serine/threonine kinases that is required for the structural integrity and function of the Golgi complex. Despite its importance in the regulation of Golgi function, the molecular mechanisms regulating PKD activity are still incompletely understood. Using the genetically encoded PKD activity reporter G-PKDrep we now uncover a Rho signaling network comprising GEF-H1, the RhoGAP DLC3, and the Rho effector PLCe that regulate the activation of PKD at trans-Golgi membranes. We further show that this molecular network coordinates the formation of TGN-derived Rab6-positive transport carriers delivering cargo for localized exocytosis at focal adhesions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Stephan A Eisler

    Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Filipa Curado

    Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Gisela Link

    Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Sarah Schulz

    Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Melanie Noack

    Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Maren Steinke

    Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Monilola A Olayioye

    Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Angelika Hausser

    Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
    For correspondence
    angelika.hausser@izi.uni-stuttgart.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4102-9286

Funding

Deutsche Krebshilfe

  • Angelika Hausser

Deutsche Forschungsgemeinschaft

  • Angelika Hausser

Volkswagen Foundation

  • Angelika Hausser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Suzanne R Pfeffer, Stanford University School of Medicine, United States

Publication history

  1. Received: February 13, 2018
  2. Accepted: July 19, 2018
  3. Accepted Manuscript published: July 20, 2018 (version 1)
  4. Version of Record published: August 1, 2018 (version 2)

Copyright

© 2018, Eisler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,115
    Page views
  • 397
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Yong Fu et al.
    Research Article

    Toxoplasma gondii has evolved different developmental stages for disseminating during acute infection (i.e. tachyzoites) and for establishing chronic infection (i.e. bradyzoites). Calcium ion (Ca2+) signaling tightly regulates the lytic cycle of tachyzoites by controlling microneme secretion and motility to drive egress and cell invasion. However, the roles of Ca2+ signaling pathways in bradyzoites remain largely unexplored. Here we show that Ca2+ responses are highly restricted in bradyzoites and that they fail to egress in response to agonists. Development of dual-reporter parasites revealed dampened Ca2+ responses and minimal microneme secretion by bradyzoites induced in vitro or harvested from infected mice and tested ex vivo. Ratiometric Ca2+ imaging demonstrated lower Ca2+ basal levels, reduced magnitude, and slower Ca2+ kinetics in bradyzoites compared with tachyzoites stimulated with agonists. Diminished responses in bradyzoites were associated with down-regulation of Ca2+-ATPases involved in intracellular Ca2+ storage in the endoplasmic reticulum (ER) and acidocalcisomes. Once liberated from cysts by trypsin digestion, bradyzoites incubated in glucose plus Ca2+ rapidly restored their intracellular Ca2+ and ATP stores leading to enhanced gliding. Collectively, our findings indicate that intracellular bradyzoites exhibit dampened Ca2+ signaling and lower energy levels that restrict egress, and yet upon release they rapidly respond to changes in the environment to regain motility.

    1. Cell Biology
    Michelina Kierzek et al.
    Tools and Resources

    Fluorescent probes that change their spectral properties upon binding to small biomolecules, ions, or changes in the membrane potential (Vm) are invaluable tools to study cellular signaling pathways. Here, we introduce a novel technique for simultaneous recording of multiple probes at millisecond time resolution: frequency- and spectrally-tuned multiplexing (FASTM). Different from present multiplexing approaches, FASTM uses phase-sensitive signal detection, which renders various combinations of common probes for Vm and ions accessible for multiplexing. Using kinetic stopped-flow fluorimetry, we show that FASTM allows simultaneous recording of rapid changes in Ca2+, pH, Na+, and Vm with high sensitivity and minimal crosstalk. FASTM is also suited for multiplexing using single-cell microscopy and genetically-encoded FRET biosensors. Moreover, FASTM is compatible with opto-chemical tools to study signaling using light. Finally, we show that the exceptional time resolution of FASTM also allows resolving rapid chemical reactions. Altogether, FASTM opens new opportunities for interrogating cellular signaling.