1. Evolutionary Biology
  2. Microbiology and Infectious Disease
Download icon

Stochastic processes constrain the within and between host evolution of influenza virus

Research Article
  • Cited 71
  • Views 4,135
  • Annotations
Cite this article as: eLife 2018;7:e35962 doi: 10.7554/eLife.35962

Abstract

The evolutionary dynamics of influenza virus ultimately derive from processes that take place within and between infected individuals. Here we define influenza virus dynamics in human hosts through sequencing of 249 specimens from 200 individuals collected over 6290 person-seasons of observation. Because these viruses were collected from individuals in a prospective community-based cohort, they are broadly representative of natural infections with seasonal viruses. Consistent with a neutral model of evolution, sequence data from 49 serially sampled individuals illustrated the dynamic turnover of synonymous and nonsynonymous single nucleotide variants and provided little evidence for positive selection of antigenic variants. We also identified 43 genetically-validated transmission pairs in this cohort. Maximum likelihood optimization of multiple transmission models estimated an effective transmission bottleneck of 1-2 genomes. Our data suggest that positive selection is inefficient at the level of the individual host and that stochastic processes dominate the host-level evolution of influenza viruses.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided. All sequence reads have been deposited to NCBI's BioProject under accession number PRJNA412631.

The following data sets were generated

Article and author information

Author details

  1. John T McCrone

    Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9846-8917
  2. Robert J Woods

    Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Emily T Martin

    Department of Epidemiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ryan E Malosh

    Department of Epidemiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3546-5935
  5. Arnold S Monto

    Department of Epidemiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Adam S Lauring

    Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
    For correspondence
    alauring@med.umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2906-8335

Funding

Doris Duke Charitable Foundation (CSDA 2013105)

  • Adam S Lauring

National Institute of Allergy and Infectious Diseases (R01 AI118886)

  • Adam S Lauring

National Institute of General Medical Sciences (T32 GM007544)

  • John T McCrone

Centers for Disease Control and Prevention (U01 IP00474)

  • Arnold S Monto

National Institute of Allergy and Infectious Diseases (K08 AI119182)

  • Robert J Woods

National Institute of Allergy and Infectious Diseases (R01 AI097150)

  • Arnold S Monto

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was approved by the Institutional Review Board of the University of Michigan Medical School. Adults provided written informed consent for participation for themselves and their children; children 7-17 years provided oral assent.

Reviewing Editor

  1. Richard A Neher, University of Basel, Switzerland

Publication history

  1. Received: February 15, 2018
  2. Accepted: April 18, 2018
  3. Accepted Manuscript published: April 23, 2018 (version 1)
  4. Version of Record published: May 3, 2018 (version 2)
  5. Version of Record updated: June 29, 2018 (version 3)

Copyright

© 2018, McCrone et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,135
    Page views
  • 552
    Downloads
  • 71
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Srijan Seal et al.
    Review Article

    Researchers worldwide are repeatedly warning us against future zoonotic diseases resulting from humankind’s insurgence into natural ecosystems. The same zoonotic pathogens that cause severe infections in a human host frequently fail to produce any disease outcome in their natural hosts. What precise features of the immune system enable natural reservoirs to carry these pathogens so efficiently? To understand these effects, we highlight the importance of tracing the evolutionary basis of pathogen tolerance in reservoir hosts, while drawing implications from their diverse physiological and life-history traits, and ecological contexts of host-pathogen interactions. Long-term co-evolution might allow reservoir hosts to modulate immunity and evolve tolerance to zoonotic pathogens, increasing their circulation and infectious period. Such processes can also create a genetically diverse pathogen pool by allowing more mutations and genetic exchanges between circulating strains, thereby harboring rare alive-on-arrival variants with extended infectivity to new hosts (i.e., spillover). Finally, we end by underscoring the indispensability of a large multidisciplinary empirical framework to explore the proposed link between evolved tolerance, pathogen prevalence, and spillover in the wild.

    1. Ecology
    2. Evolutionary Biology
    Motoko Iwashita, Masato Yoshizawa
    Research Article

    Social behaviour is a hallmark of complex animal systems; however, some species appear to have secondarily lost this social ability. In these non-social species, whether social abilities are permanently lost or suppressed is unclear. The blind cavefish Astyanax mexicanus is known to be asocial. Here, we reveal that cavefish exhibited social-like interactions in familiar environments but suppressed these interactions in stress-associated unfamiliar environments. Furthermore, the level of suppression in sociality was positively correlated with that of stereotypic repetitive behaviour, as seen in mammals. Treatment with a human antipsychotic drug targeting the dopaminergic system induced social-like interactions in cavefish, even in unfamiliar environments, while reducing repetitive behaviour. Overall, these results suggest that the antagonistic association between repetitive and social-like behaviours is deeply shared from teleosts through mammals.