Background selection and biased gene conversion affect more than 95% of the human genome and bias demographic inferences

Abstract

Disentangling the effect on genomic diversity of natural selection from that of demography is notoriously difficult, but necessary to properly reconstruct the history of species. Here, we use high-quality human genomic data to show that purifying selection at linked sites (i.e. background selection, BGS) and GC-biased gene conversion (gBGC) together affect as much as 95% of the variants of our genome. We find that the magnitude and relative importance of BGS and gBGC are largely determined by variation in recombination rate and base composition. Importantly, synonymous sites and non-transcribed regions are also affected, albeit to different degrees. Their use for demographic inference can lead to strong biases. However, by conditioning on genomic regions with recombination rates above 1.5 cM/Mb and mutation types (C↔G, A↔T), we identify a set of SNPs that is mostly unaffected by BGS or gBGC, and that avoids these biases in the reconstruction of human history.

Data availability

All data generated and script to analyse them is provided on the dryad repesitory: http://datadryad.org/review?doi=doi:10.5061/dryad.t76fk80

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Fanny Pouyet

    Institute of Ecology and Evolution, University of Bern, Berne, Switzerland
    For correspondence
    fanny.pouyet@iee.unibe.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5614-6998
  2. Simon Aeschbacher

    Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexandre Thiéry

    Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Laurent Excoffier

    Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
    For correspondence
    laurent.excoffier@iee.unibe.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7507-6494

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030B-166605)

  • Laurent Excoffier

University of Berkeley (Visiting Miller Professorship)

  • Laurent Excoffier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Pouyet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,576
    views
  • 1,033
    downloads
  • 126
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fanny Pouyet
  2. Simon Aeschbacher
  3. Alexandre Thiéry
  4. Laurent Excoffier
(2018)
Background selection and biased gene conversion affect more than 95% of the human genome and bias demographic inferences
eLife 7:e36317.
https://doi.org/10.7554/eLife.36317

Share this article

https://doi.org/10.7554/eLife.36317

Further reading

    1. Genetics and Genomics
    2. Stem Cells and Regenerative Medicine
    Amy Tresenrider, Marcus Hooper ... Thomas A Reh
    Research Article

    Retinal degeneration in mammals causes permanent loss of vision, due to an inability to regenerate naturally. Some non-mammalian vertebrates show robust regeneration, via Muller glia (MG). We have recently made significant progress in stimulating adult mouse MG to regenerate functional neurons by transgenic expression of the proneural transcription factor Ascl1. While these results showed that MG can serve as an endogenous source of neuronal replacement, the efficacy of this process is limited. With the goal of improving this in mammals, we designed a small molecule screen using sci-Plex, a method to multiplex up to thousands of single-nucleus RNA-seq conditions into a single experiment. We used this technology to screen a library of 92 compounds, identified, and validated two that promote neurogenesis in vivo. Our results demonstrate that high-throughput single-cell molecular profiling can substantially improve the discovery process for molecules and pathways that can stimulate neural regeneration and further demonstrate the potential for this approach to restore vision in patients with retinal disease.

    1. Cancer Biology
    2. Genetics and Genomics
    Yaroslav Kainov, Fursham Hamid, Eugene V Makeyev
    Research Article

    The expression of eukaryotic genes relies on the precise 3'-terminal cleavage and polyadenylation of newly synthesized pre-mRNA transcripts. Defects in these processes have been associated with various diseases, including cancer. While cancer-focused sequencing studies have identified numerous driver mutations in protein-coding sequences, noncoding drivers – particularly those affecting the cis-elements required for pre-mRNA cleavage and polyadenylation – have received less attention. Here, we systematically analysed somatic mutations affecting 3'UTR polyadenylation signals in human cancers using the Pan-Cancer Analysis of Whole Genomes (PCAWG) dataset. We found a striking enrichment of cancer-specific somatic mutations that disrupt strong and evolutionarily conserved cleavage and polyadenylation signals within tumour suppressor genes. Further bioinformatics and experimental analyses conducted as a part of our study suggest that these mutations have a profound capacity to downregulate the expression of tumour suppressor genes. Thus, this work uncovers a novel class of noncoding somatic mutations with significant potential to drive cancer progression.